dns/dnssec.go

751 lines
18 KiB
Go
Raw Normal View History

// Copyright 2012 Miek Gieben. All rights reserved.
// DNSSEC
//
// DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It
// uses public key cryptography to securely sign resource records. The
// public keys are stored in DNSKEY records and the signatures in RRSIG records.
//
// Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit
// to an request.
//
// m := new(dns.Msg)
// m.SetEdns0(4096, true)
package dns
import (
2011-09-08 06:38:34 +10:00
"bytes"
2011-02-25 02:22:14 +11:00
"crypto"
2012-04-17 19:39:58 +10:00
"crypto/dsa"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/md5"
"crypto/rand"
"crypto/rsa"
"crypto/sha1"
"crypto/sha256"
"crypto/sha512"
"encoding/hex"
"hash"
2011-12-17 01:06:24 +11:00
"io"
"math/big"
"sort"
"strings"
"time"
)
// DNSSEC encryption algorithm codes.
const (
RSAMD5 = 1
DH = 2
DSA = 3
ECC = 4
RSASHA1 = 5
DSANSEC3SHA1 = 6
RSASHA1NSEC3SHA1 = 7
RSASHA256 = 8
RSASHA512 = 10
ECCGOST = 12
2012-04-11 22:37:51 +10:00
ECDSAP256SHA256 = 13
ECDSAP384SHA384 = 14
2012-04-16 17:09:32 +10:00
INDIRECT = 252
2011-12-10 07:45:57 +11:00
PRIVATEDNS = 253 // Private (experimental keys)
PRIVATEOID = 254
)
// DNSSEC hashing algorithm codes.
const (
2011-07-24 07:43:43 +10:00
_ = iota
SHA1 // RFC 4034
SHA256 // RFC 4509
GOST94 // RFC 5933
SHA384 // Experimental
2012-04-11 22:32:44 +10:00
SHA512 // Experimental
)
// DNSKEY flag values.
2011-03-03 21:45:33 +11:00
const (
2012-01-09 02:49:54 +11:00
SEP = 1
ZONE = 1 << 7
REVOKE = 1 << 8
2011-03-03 21:45:33 +11:00
)
// The RRSIG needs to be converted to wireformat with some of
// the rdata (the signature) missing. Use this struct to easy
2011-02-12 08:21:41 +11:00
// the conversion (and re-use the pack/unpack functions).
type rrsigWireFmt struct {
TypeCovered uint16
Algorithm uint8
Labels uint8
OrigTtl uint32
Expiration uint32
Inception uint32
KeyTag uint16
SignerName string "domain-name"
/* No Signature */
}
// Used for converting DNSKEY's rdata to wirefmt.
type dnskeyWireFmt struct {
Flags uint16
Protocol uint8
Algorithm uint8
2011-02-25 02:22:14 +11:00
PublicKey string "base64"
2011-01-18 21:34:48 +11:00
/* Nothing is left out */
}
2012-01-16 02:14:22 +11:00
// KeyTag calculates the keytag (or key-id) of the DNSKEY.
func (k *RR_DNSKEY) KeyTag() uint16 {
if k == nil {
return 0
}
var keytag int
switch k.Algorithm {
2011-07-09 01:27:44 +10:00
case RSAMD5:
2012-04-17 18:55:02 +10:00
// Look at the bottom two bytes of the modules, which the last
// item in the pubkey. We could do this faster by looking directly
// at the base64 values. But I'm lazy.
modulus, _ := packBase64([]byte(k.PublicKey))
if (len(modulus) > 1) {
x, _ := unpackUint16(modulus, len(modulus)-2)
keytag = int(x)
}
default:
keywire := new(dnskeyWireFmt)
keywire.Flags = k.Flags
keywire.Protocol = k.Protocol
keywire.Algorithm = k.Algorithm
keywire.PublicKey = k.PublicKey
2011-01-28 06:43:55 +11:00
wire := make([]byte, DefaultMsgSize)
n, ok := packStruct(keywire, wire, 0)
if !ok {
return 0
}
wire = wire[:n]
for i, v := range wire {
if i&1 != 0 {
keytag += int(v) // must be larger than uint32
} else {
keytag += int(v) << 8
}
}
keytag += (keytag >> 16) & 0xFFFF
keytag &= 0xFFFF
}
return uint16(keytag)
}
2011-09-09 03:25:45 +10:00
// ToDS converts a DNSKEY record to a DS record.
func (k *RR_DNSKEY) ToDS(h int) *RR_DS {
if k == nil {
return nil
}
ds := new(RR_DS)
ds.Hdr.Name = k.Hdr.Name
ds.Hdr.Class = k.Hdr.Class
2011-03-24 19:24:24 +11:00
ds.Hdr.Rrtype = TypeDS
ds.Hdr.Ttl = k.Hdr.Ttl
ds.Algorithm = k.Algorithm
ds.DigestType = uint8(h)
ds.KeyTag = k.KeyTag()
keywire := new(dnskeyWireFmt)
keywire.Flags = k.Flags
keywire.Protocol = k.Protocol
keywire.Algorithm = k.Algorithm
keywire.PublicKey = k.PublicKey
2011-01-28 06:43:55 +11:00
wire := make([]byte, DefaultMsgSize)
n, ok := packStruct(keywire, wire, 0)
if !ok {
2012-03-20 06:00:40 +11:00
return nil
}
wire = wire[:n]
owner := make([]byte, 255)
off, ok1 := PackDomainName(k.Hdr.Name, owner, 0, nil, false)
if !ok1 {
2012-03-20 06:00:40 +11:00
return nil
}
owner = owner[:off]
2011-03-16 05:41:28 +11:00
// RFC4034:
// digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA);
// "|" denotes concatenation
// DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key.
// digest buffer
digest := append(owner, wire...) // another copy
switch h {
2011-07-09 01:27:44 +10:00
case SHA1:
s := sha1.New()
2011-12-17 01:06:24 +11:00
io.WriteString(s, string(digest))
ds.Digest = hex.EncodeToString(s.Sum(nil))
2011-07-09 01:27:44 +10:00
case SHA256:
s := sha256.New()
2011-12-17 01:06:24 +11:00
io.WriteString(s, string(digest))
ds.Digest = hex.EncodeToString(s.Sum(nil))
2011-07-24 07:43:43 +10:00
case SHA384:
s := sha512.New384()
2011-12-17 01:06:24 +11:00
io.WriteString(s, string(digest))
ds.Digest = hex.EncodeToString(s.Sum(nil))
2011-07-09 01:27:44 +10:00
case GOST94:
2011-01-18 21:34:48 +11:00
/* I have no clue */
default:
return nil
}
return ds
}
2011-09-08 16:30:17 +10:00
// Sign signs an RRSet. The signature needs to be filled in with
// the values: Inception, Expiration, KeyTag, SignerName and Algorithm.
2011-09-09 03:25:45 +10:00
// The rest is copied from the RRset. Sign returns true when the signing went OK,
// otherwise false.
// The signature data in the RRSIG is filled by this method.
2011-03-31 00:44:28 +11:00
// There is no check if RRSet is a proper (RFC 2181) RRSet.
func (s *RR_RRSIG) Sign(k PrivateKey, rrset []RR) error {
if k == nil {
return ErrPrivKey
}
// s.Inception and s.Expiration may be 0 (rollover etc.), the rest must be set
2011-01-18 21:34:48 +11:00
if s.KeyTag == 0 || len(s.SignerName) == 0 || s.Algorithm == 0 {
return ErrKey
2011-02-25 02:22:14 +11:00
}
s.Hdr.Rrtype = TypeRRSIG
s.Hdr.Name = rrset[0].Header().Name
s.Hdr.Class = rrset[0].Header().Class
2011-01-18 21:34:48 +11:00
s.OrigTtl = rrset[0].Header().Ttl
s.TypeCovered = rrset[0].Header().Rrtype
s.TypeCovered = rrset[0].Header().Rrtype
s.Labels, _, _ = IsDomainName(rrset[0].Header().Name)
2012-04-07 04:12:00 +10:00
2011-02-25 02:22:14 +11:00
if strings.HasPrefix(rrset[0].Header().Name, "*") {
s.Labels-- // wildcard, remove from label count
2011-02-25 02:22:14 +11:00
}
sigwire := new(rrsigWireFmt)
sigwire.TypeCovered = s.TypeCovered
sigwire.Algorithm = s.Algorithm
sigwire.Labels = s.Labels
sigwire.OrigTtl = s.OrigTtl
sigwire.Expiration = s.Expiration
sigwire.Inception = s.Inception
sigwire.KeyTag = s.KeyTag
2012-02-29 05:25:09 +11:00
// For signing, lowercase this name
sigwire.SignerName = strings.ToLower(s.SignerName)
// Create the desired binary blob
2011-01-27 19:38:52 +11:00
signdata := make([]byte, DefaultMsgSize)
n, ok := packStruct(sigwire, signdata, 0)
if !ok {
return ErrPack
}
signdata = signdata[:n]
2011-02-25 02:22:14 +11:00
wire := rawSignatureData(rrset, s)
if wire == nil {
return ErrSigGen
2011-02-25 02:22:14 +11:00
}
signdata = append(signdata, wire...)
2011-07-24 07:43:43 +10:00
var sighash []byte
var h hash.Hash
var ch crypto.Hash // Only need for RSA
switch s.Algorithm {
2012-04-19 22:39:50 +10:00
case DSA, DSANSEC3SHA1:
2012-04-18 19:57:32 +10:00
// Implicit in the ParameterSizes
2011-07-24 07:43:43 +10:00
case RSAMD5:
h = md5.New()
ch = crypto.MD5
case RSASHA1, RSASHA1NSEC3SHA1:
2011-07-24 07:43:43 +10:00
h = sha1.New()
ch = crypto.SHA1
2012-04-11 22:37:51 +10:00
case RSASHA256, ECDSAP256SHA256:
2011-07-24 07:43:43 +10:00
h = sha256.New()
ch = crypto.SHA256
2012-04-11 22:37:51 +10:00
case ECDSAP384SHA384:
2011-07-24 07:43:43 +10:00
h = sha512.New384()
case RSASHA512:
h = sha512.New()
ch = crypto.SHA512
default:
return ErrAlg
2011-07-24 07:43:43 +10:00
}
2011-12-17 01:06:24 +11:00
io.WriteString(h, string(signdata))
sighash = h.Sum(nil)
2011-07-24 07:43:43 +10:00
switch p := k.(type) {
case *dsa.PrivateKey:
2012-04-18 19:57:32 +10:00
r1, s1, err := dsa.Sign(rand.Reader, p, sighash)
if err != nil {
return err
}
2012-04-19 21:32:50 +10:00
signature := []byte{0x4D} // T value, here the ASCII M for Miek (not used in DNSSEC)
signature = append(signature, r1.Bytes()...)
2012-04-18 19:57:32 +10:00
signature = append(signature, s1.Bytes()...)
s.Signature = unpackBase64(signature)
2011-07-24 07:43:43 +10:00
case *rsa.PrivateKey:
signature, err := rsa.SignPKCS1v15(rand.Reader, p, ch, sighash)
if err != nil {
return err
2011-07-24 07:43:43 +10:00
}
s.Signature = unpackBase64(signature)
case *ecdsa.PrivateKey:
r1, s1, err := ecdsa.Sign(rand.Reader, p, sighash)
if err != nil {
return err
2011-07-24 07:43:43 +10:00
}
signature := r1.Bytes()
signature = append(signature, s1.Bytes()...)
s.Signature = unpackBase64(signature)
default:
// Not given the correct key
return ErrKeyAlg
2011-07-24 07:43:43 +10:00
}
return nil
2011-01-14 03:14:14 +11:00
}
2011-09-09 03:25:45 +10:00
// Verify validates an RRSet with the signature and key. This is only the
2012-01-29 10:34:59 +11:00
// cryptographic test, the signature validity period must be checked separately.
// This function modifies the rdata of some RRs (lowercases domain names) for the validation to work.
func (s *RR_RRSIG) Verify(k *RR_DNSKEY, rrset []RR) error {
2012-02-10 19:19:23 +11:00
// First the easy checks
2012-02-29 05:25:09 +11:00
if len(rrset) == 0 {
return ErrSigGen
}
if s.KeyTag != k.KeyTag() {
return ErrKey
}
if s.Hdr.Class != k.Hdr.Class {
return ErrKey
}
if s.Algorithm != k.Algorithm {
return ErrKey
}
2012-02-29 05:25:09 +11:00
if strings.ToLower(s.SignerName) != strings.ToLower(k.Hdr.Name) {
return ErrKey
}
2012-02-23 20:47:50 +11:00
if k.Protocol != 3 {
return ErrKey
}
for _, r := range rrset {
if r.Header().Class != s.Hdr.Class {
return ErrRRset
}
if r.Header().Rrtype != s.TypeCovered {
return ErrRRset
}
}
// RFC 4035 5.3.2. Reconstructing the Signed Data
// Copy the sig, except the rrsig data
sigwire := new(rrsigWireFmt)
sigwire.TypeCovered = s.TypeCovered
sigwire.Algorithm = s.Algorithm
sigwire.Labels = s.Labels
sigwire.OrigTtl = s.OrigTtl
sigwire.Expiration = s.Expiration
sigwire.Inception = s.Inception
sigwire.KeyTag = s.KeyTag
2012-03-01 07:11:45 +11:00
sigwire.SignerName = strings.ToLower(s.SignerName)
// Create the desired binary blob
2011-01-27 19:38:52 +11:00
signeddata := make([]byte, DefaultMsgSize)
n, ok := packStruct(sigwire, signeddata, 0)
if !ok {
return ErrPack
}
signeddata = signeddata[:n]
2011-02-25 02:22:14 +11:00
wire := rawSignatureData(rrset, s)
if wire == nil {
return ErrSigGen
2011-02-25 02:22:14 +11:00
}
signeddata = append(signeddata, wire...)
2012-04-16 05:37:00 +10:00
sigbuf := s.sigBuf() // Get the binary signature data
if s.Algorithm == PRIVATEDNS { // PRIVATEOID
// TODO(mg)
2011-12-10 07:45:57 +11:00
// remove the domain name and assume its our
}
switch s.Algorithm {
case RSASHA1, RSASHA1NSEC3SHA1, RSASHA256, RSASHA512, RSAMD5:
2012-04-16 05:37:00 +10:00
// TODO(mg): this can be done quicker, ie. cache the pubkey data somewhere??
2012-04-12 00:09:40 +10:00
pubkey := k.publicKeyRSA() // Get the key
2012-03-01 07:11:45 +11:00
if pubkey == nil {
return ErrKey
}
// Setup the hash as defined for this alg.
var h hash.Hash
2011-02-02 19:05:25 +11:00
var ch crypto.Hash
switch s.Algorithm {
2011-07-09 01:27:44 +10:00
case RSAMD5:
h = md5.New()
2011-02-02 19:05:25 +11:00
ch = crypto.MD5
case RSASHA1, RSASHA1NSEC3SHA1:
h = sha1.New()
2011-02-02 19:05:25 +11:00
ch = crypto.SHA1
2011-07-09 01:27:44 +10:00
case RSASHA256:
h = sha256.New()
2011-02-02 19:05:25 +11:00
ch = crypto.SHA256
2011-07-09 01:27:44 +10:00
case RSASHA512:
h = sha512.New()
2011-02-02 19:05:25 +11:00
ch = crypto.SHA512
}
2011-12-17 01:06:24 +11:00
io.WriteString(h, string(signeddata))
sighash := h.Sum(nil)
return rsa.VerifyPKCS1v15(pubkey, ch, sighash, sigbuf)
2012-04-12 00:20:29 +10:00
case ECDSAP256SHA256, ECDSAP384SHA384:
pubkey := k.publicKeyCurve()
if pubkey == nil {
return ErrKey
}
2012-04-16 05:37:00 +10:00
var h hash.Hash
switch s.Algorithm {
case ECDSAP256SHA256:
h = sha256.New()
case ECDSAP384SHA384:
h = sha512.New()
}
io.WriteString(h, string(signeddata))
sighash := h.Sum(nil)
// Split sigbuf into the r and s coordinates
r := big.NewInt(0)
r.SetBytes(sigbuf[:len(sigbuf)/2])
s := big.NewInt(0)
s.SetBytes(sigbuf[len(sigbuf)/2:])
if ecdsa.Verify(pubkey, sighash, r, s) {
2012-04-16 05:37:00 +10:00
return ErrSig
}
return nil
}
// Unknown alg
2011-11-03 09:06:54 +11:00
return ErrAlg
}
2011-09-09 03:25:45 +10:00
// ValidityPeriod uses RFC1982 serial arithmetic to calculate
// if a signature period is valid.
2011-03-24 19:24:24 +11:00
func (s *RR_RRSIG) ValidityPeriod() bool {
utc := time.Now().UTC().Unix()
modi := (int64(s.Inception) - utc) / Year68
mode := (int64(s.Expiration) - utc) / Year68
ti := int64(s.Inception) + (modi * Year68)
te := int64(s.Expiration) + (mode * Year68)
return ti <= utc && utc <= te
}
// Return the signatures base64 encodedig sigdata as a byte slice.
func (s *RR_RRSIG) sigBuf() []byte {
sigbuf, err := packBase64([]byte(s.Signature))
if err != nil {
return nil
}
return sigbuf
}
// setPublicKeyInPrivate sets the public key in the private key.
func (k *RR_DNSKEY) setPublicKeyInPrivate(p PrivateKey) bool {
2012-04-12 00:09:40 +10:00
switch t := p.(type) {
2012-04-17 19:39:58 +10:00
case *dsa.PrivateKey:
x := k.publicKeyDSA()
if x == nil {
return false
}
t.PublicKey = *x
2012-04-12 00:09:40 +10:00
case *rsa.PrivateKey:
2012-04-17 19:39:58 +10:00
x := k.publicKeyRSA()
if x == nil {
return false
}
t.PublicKey = *x
2012-04-12 00:09:40 +10:00
case *ecdsa.PrivateKey:
x := k.publicKeyCurve()
if x == nil {
return false
}
t.PublicKey = *x
}
return true
}
// publicKeyRSA returns the RSA public key from a DNSKEY record.
func (k *RR_DNSKEY) publicKeyRSA() *rsa.PublicKey {
keybuf, err := packBase64([]byte(k.PublicKey))
if err != nil {
return nil
}
// RFC 2537/3110, section 2. RSA Public KEY Resource Records
// Length is in the 0th byte, unless its zero, then it
// it in bytes 1 and 2 and its a 16 bit number
explen := uint16(keybuf[0])
keyoff := 1
if explen == 0 {
explen = uint16(keybuf[1])<<8 | uint16(keybuf[2])
keyoff = 3
}
pubkey := new(rsa.PublicKey)
2012-03-01 07:11:45 +11:00
pubkey.N = big.NewInt(0)
2012-03-01 07:11:45 +11:00
shift := uint64((explen - 1) * 8)
expo := uint64(0)
for i := int(explen - 1); i > 0; i-- {
expo += uint64(keybuf[keyoff+i]) << shift
shift -= 8
}
2012-03-01 07:11:45 +11:00
// Remainder
expo += uint64(keybuf[keyoff])
if expo > 2<<31 {
// Larger expo than supported.
// println("dns: F5 primes (or larger) are not supported")
2012-03-01 07:11:45 +11:00
return nil
}
pubkey.E = int(expo)
pubkey.N.SetBytes(keybuf[keyoff+int(explen):])
return pubkey
}
2012-04-12 00:09:40 +10:00
// publicKeyCurve returns the Curve public key from the DNSKEY record.
func (k *RR_DNSKEY) publicKeyCurve() *ecdsa.PublicKey {
2011-07-24 07:43:43 +10:00
keybuf, err := packBase64([]byte(k.PublicKey))
if err != nil {
return nil
}
2012-04-11 22:32:44 +10:00
pubkey := new(ecdsa.PublicKey)
2011-07-24 07:43:43 +10:00
switch k.Algorithm {
2012-04-11 22:37:51 +10:00
case ECDSAP256SHA256:
2012-04-11 22:32:44 +10:00
pubkey.Curve = elliptic.P256()
2012-04-12 23:39:54 +10:00
if len(keybuf) != 64 {
// wrongly encoded key
return nil
}
2012-04-11 22:37:51 +10:00
case ECDSAP384SHA384:
2012-04-11 22:32:44 +10:00
pubkey.Curve = elliptic.P384()
2012-04-12 23:39:54 +10:00
if len(keybuf) != 96 {
// Wrongly encoded key
return nil
}
2011-07-24 07:43:43 +10:00
}
2012-04-11 22:32:44 +10:00
pubkey.X = big.NewInt(0)
pubkey.X.SetBytes(keybuf[:len(keybuf)/2])
pubkey.Y = big.NewInt(0)
2012-04-12 23:39:54 +10:00
pubkey.Y.SetBytes(keybuf[len(keybuf)/2:])
2011-07-24 07:43:43 +10:00
return pubkey
2011-07-08 19:08:31 +10:00
}
2012-04-17 19:39:58 +10:00
func (k *RR_DNSKEY) publicKeyDSA() *dsa.PublicKey {
keybuf, err := packBase64([]byte(k.PublicKey))
if err != nil {
return nil
}
if len(keybuf) < 22 { // TODO: check
return nil
}
t := int(keybuf[0])
size := 64 + t*8
pubkey := new(dsa.PublicKey)
pubkey.Parameters.Q = big.NewInt(0)
pubkey.Parameters.Q.SetBytes(keybuf[1:21]) // +/- 1 ?
pubkey.Parameters.P = big.NewInt(0)
pubkey.Parameters.P.SetBytes(keybuf[22:22+size])
pubkey.Parameters.G = big.NewInt(0)
pubkey.Parameters.G.SetBytes(keybuf[22+size+1:22+size*2])
pubkey.Y = big.NewInt(0)
pubkey.Y.SetBytes(keybuf[22+size*2+1:22+size*3])
return pubkey
}
// Set the public key (the value E and N)
2011-03-24 19:02:19 +11:00
func (k *RR_DNSKEY) setPublicKeyRSA(_E int, _N *big.Int) bool {
2011-07-07 19:19:57 +10:00
if _E == 0 || _N == nil {
2011-03-24 19:24:24 +11:00
return false
}
2011-01-18 06:29:40 +11:00
buf := exponentToBuf(_E)
buf = append(buf, _N.Bytes()...)
k.PublicKey = unpackBase64(buf)
2011-03-24 19:02:19 +11:00
return true
2011-01-18 04:13:52 +11:00
}
2011-07-08 18:41:07 +10:00
// Set the public key for Elliptic Curves
func (k *RR_DNSKEY) setPublicKeyCurve(_X, _Y *big.Int) bool {
2011-07-24 07:43:43 +10:00
if _X == nil || _Y == nil {
return false
}
buf := curveToBuf(_X, _Y)
2012-04-12 23:39:54 +10:00
// Check the length of the buffer, either 64 or 92 bytes
2011-07-24 07:43:43 +10:00
k.PublicKey = unpackBase64(buf)
return true
2012-04-17 19:39:58 +10:00
}
// Set the public key for DSA
func (k *RR_DNSKEY) setPublicKeyDSA(_Q, _P, _G, _Y *big.Int) bool {
if _Q == nil || _P == nil || _G == nil || _Y == nil {
2012-04-17 19:39:58 +10:00
return false
}
buf := dsaToBuf(_Q, _P, _G, _Y)
k.PublicKey = unpackBase64(buf)
2012-04-17 19:39:58 +10:00
return true
2011-07-08 18:41:07 +10:00
}
2011-07-07 19:19:57 +10:00
// Set the public key (the values E and N) for RSA
2011-01-18 06:18:51 +11:00
// RFC 3110: Section 2. RSA Public KEY Resource Records
2011-01-18 04:13:52 +11:00
func exponentToBuf(_E int) []byte {
2011-01-18 06:29:40 +11:00
var buf []byte
i := big.NewInt(int64(_E))
if len(i.Bytes()) < 256 {
buf = make([]byte, 1)
buf[0] = uint8(len(i.Bytes()))
} else {
buf = make([]byte, 3)
buf[0] = 0
buf[1] = uint8(len(i.Bytes()) >> 8)
buf[2] = uint8(len(i.Bytes()))
}
buf = append(buf, i.Bytes()...)
return buf
}
2012-04-11 22:32:44 +10:00
// Set the public key for X and Y for Curve. The two
// values are just concatenated.
func curveToBuf(_X, _Y *big.Int) []byte {
2011-07-24 07:43:43 +10:00
buf := _X.Bytes()
buf = append(buf, _Y.Bytes()...)
return buf
2011-07-08 18:41:07 +10:00
}
// Set the public key for X and Y for Curve. The two
// values are just concatenated.
func dsaToBuf(_Q, _P, _G, _Y *big.Int) []byte {
2012-04-18 20:55:48 +10:00
t := byte((len(_G.Bytes()) - 64) / 8)
buf := []byte{t}
buf = append(buf, _Q.Bytes()...)
buf = append(buf, _P.Bytes()...)
buf = append(buf, _G.Bytes()...)
buf = append(buf, _Y.Bytes()...)
return buf
}
2011-09-08 06:38:34 +10:00
type wireSlice [][]byte
func (p wireSlice) Len() int { return len(p) }
func (p wireSlice) Less(i, j int) bool {
2011-10-07 05:16:23 +11:00
_, ioff, _ := UnpackDomainName(p[i], 0)
_, joff, _ := UnpackDomainName(p[j], 0)
2011-09-08 06:38:34 +10:00
return bytes.Compare(p[i][ioff+10:], p[j][joff+10:]) < 0
}
func (p wireSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// Return the raw signature data.
func rawSignatureData(rrset []RR, s *RR_RRSIG) (buf []byte) {
2011-09-08 06:38:34 +10:00
wires := make(wireSlice, len(rrset))
for i, r := range rrset {
2012-02-24 05:37:08 +11:00
r1 := r
h1 := r1.Header()
labels := SplitLabels(h1.Name)
// 6.2. Canonical RR Form. (4) - wildcards
if len(labels) > int(s.Labels) {
// Wildcard
h1.Name = "*." + strings.Join(labels[len(labels)-int(s.Labels):], ".") + "."
}
// RFC 4034: 6.2. Canonical RR Form. (2) - domain name to lowercase
h1.Name = strings.ToLower(h1.Name)
2012-02-23 20:47:50 +11:00
// 6.2. Canonical RR Form. (3) - domain rdata to lowercase.
// NS, MD, MF, CNAME, SOA, MB, MG, MR, PTR,
// HINFO, MINFO, MX, RP, AFSDB, RT, SIG, PX, NXT, NAPTR, KX,
// SRV, DNAME, A6
2012-02-24 05:37:08 +11:00
switch x := r1.(type) {
2012-02-23 20:47:50 +11:00
case *RR_NS:
p := x.Ns
defer func() { x.Ns = p }()
2012-02-23 20:47:50 +11:00
x.Ns = strings.ToLower(x.Ns)
case *RR_CNAME:
p := x.Target
defer func() { x.Target = p }()
x.Target = strings.ToLower(x.Target)
2012-02-23 20:47:50 +11:00
case *RR_SOA:
p := x.Ns
q := x.Mbox
defer func() { x.Ns = p }()
defer func() { x.Mbox = q }()
2012-02-23 20:47:50 +11:00
x.Ns = strings.ToLower(x.Ns)
x.Mbox = strings.ToLower(x.Mbox)
case *RR_MB:
p := x.Mb
defer func() { x.Mb = p }()
2012-02-23 20:47:50 +11:00
x.Mb = strings.ToLower(x.Mb)
case *RR_MG:
p := x.Mg
defer func() { x.Mg = p }()
2012-02-23 20:47:50 +11:00
x.Mg = strings.ToLower(x.Mg)
case *RR_MR:
p := x.Mr
defer func() { x.Mr = p }()
2012-02-23 20:47:50 +11:00
x.Mr = strings.ToLower(x.Mr)
case *RR_PTR:
p := x.Ptr
defer func() { x.Ptr = p }()
2012-02-23 20:47:50 +11:00
x.Ptr = strings.ToLower(x.Ptr)
case *RR_MINFO:
p := x.Rmail
q := x.Email
defer func() { x.Rmail = p }()
defer func() { x.Email = q }()
2012-02-23 20:47:50 +11:00
x.Rmail = strings.ToLower(x.Rmail)
x.Email = strings.ToLower(x.Email)
case *RR_MX:
p := x.Mx
defer func() { x.Mx = p }()
2012-02-23 20:47:50 +11:00
x.Mx = strings.ToLower(x.Mx)
case *RR_NAPTR:
p := x.Replacement
defer func() { x.Replacement = p }()
2012-02-23 20:47:50 +11:00
x.Replacement = strings.ToLower(x.Replacement)
case *RR_KX:
p := x.Exchanger
defer func() { x.Exchanger = p }()
2012-02-23 20:47:50 +11:00
x.Exchanger = strings.ToLower(x.Exchanger)
case *RR_SRV:
p := x.Target
defer func() { x.Target = p }()
2012-02-23 20:47:50 +11:00
x.Target = strings.ToLower(x.Target)
case *RR_DNAME:
p := x.Target
defer func() { x.Target = p }()
2012-02-23 20:47:50 +11:00
x.Target = strings.ToLower(x.Target)
}
// 6.2. Canonical RR Form. (5) - origTTL
wire := make([]byte, r1.Len()*2)
h1.Ttl = s.OrigTtl
off, ok1 := packRR(r1, wire, 0, nil, false)
if !ok1 {
return nil
}
2012-01-21 21:58:26 +11:00
wire = wire[:off]
2011-09-08 06:38:34 +10:00
wires[i] = wire
}
sort.Sort(wires)
for _, wire := range wires {
2011-02-25 02:22:14 +11:00
buf = append(buf, wire...)
}
return
}
// Map for algorithm names.
2012-01-12 23:01:43 +11:00
var Alg_str = map[uint8]string{
RSAMD5: "RSAMD5",
DH: "DH",
DSA: "DSA",
RSASHA1: "RSASHA1",
DSANSEC3SHA1: "DSA-NSEC3-SHA1",
RSASHA1NSEC3SHA1: "RSASHA1-NSEC3-SHA1",
RSASHA256: "RSASHA256",
RSASHA512: "RSASHA512",
ECCGOST: "ECC-GOST",
2012-04-11 22:37:51 +10:00
ECDSAP256SHA256: "ECDSAP256SHA256",
ECDSAP384SHA384: "ECDSAP384SHA384",
2012-04-16 17:09:32 +10:00
INDIRECT: "INDIRECT",
2011-12-10 07:45:57 +11:00
PRIVATEDNS: "PRIVATEDNS",
PRIVATEOID: "PRIVATEOID",
}
// Map of algorithm strings.
var Str_alg = reverseInt8(Alg_str)