dns/dnssec.go

470 lines
11 KiB
Go
Raw Normal View History

package dns
import (
2011-02-25 02:22:14 +11:00
"crypto"
"crypto/md5"
"crypto/sha1"
"crypto/sha256"
"crypto/sha512"
"crypto/rsa"
"crypto/rand"
"encoding/hex"
"hash"
"time"
"io"
"big"
"sort"
"strings"
"os"
)
// DNSSEC encryption algorithm codes.
const (
AlgRSAMD5 = 1
AlgDH = 2
AlgDSA = 3
AlgECC = 4
AlgRSASHA1 = 5
AlgRSASHA256 = 8
AlgRSASHA512 = 10
AlgECCGOST = 12
)
// DNSSEC hashing codes.
const (
2011-03-22 19:13:25 +11:00
_ = iota
HashSHA1
HashSHA256
HashGOST94
)
2011-03-03 21:45:33 +11:00
// DNSKEY flags values.
const (
KSK = 1
ZSK = 1 << 8
REVOKE = 1 << 7
)
// The RRSIG needs to be converted to wireformat with some of
// the rdata (the signature) missing. Use this struct to easy
2011-02-12 08:21:41 +11:00
// the conversion (and re-use the pack/unpack functions).
type rrsigWireFmt struct {
TypeCovered uint16
Algorithm uint8
Labels uint8
OrigTtl uint32
Expiration uint32
Inception uint32
KeyTag uint16
SignerName string "domain-name"
/* No Signature */
}
// Used for converting DNSKEY's rdata to wirefmt.
type dnskeyWireFmt struct {
Flags uint16
Protocol uint8
Algorithm uint8
2011-02-25 02:22:14 +11:00
PublicKey string "base64"
2011-01-18 21:34:48 +11:00
/* Nothing is left out */
}
// Calculate the keytag of the DNSKEY.
func (k *RR_DNSKEY) KeyTag() uint16 {
var keytag int
switch k.Algorithm {
case AlgRSAMD5:
keytag = 0
default:
keywire := new(dnskeyWireFmt)
keywire.Flags = k.Flags
keywire.Protocol = k.Protocol
keywire.Algorithm = k.Algorithm
keywire.PublicKey = k.PublicKey
2011-01-28 06:43:55 +11:00
wire := make([]byte, DefaultMsgSize)
n, ok := packStruct(keywire, wire, 0)
if !ok {
return 0
}
wire = wire[:n]
for i, v := range wire {
if i&1 != 0 {
keytag += int(v) // must be larger than uint32
} else {
keytag += int(v) << 8
}
}
keytag += (keytag >> 16) & 0xFFFF
keytag &= 0xFFFF
}
return uint16(keytag)
}
// Convert an DNSKEY record to a DS record.
func (k *RR_DNSKEY) ToDS(h int) *RR_DS {
ds := new(RR_DS)
ds.Hdr.Name = k.Hdr.Name
ds.Hdr.Class = k.Hdr.Class
2011-03-22 19:13:25 +11:00
ds.Hdr.Rrtype = TypeDS
ds.Hdr.Ttl = k.Hdr.Ttl
ds.Algorithm = k.Algorithm
ds.DigestType = uint8(h)
ds.KeyTag = k.KeyTag()
keywire := new(dnskeyWireFmt)
keywire.Flags = k.Flags
keywire.Protocol = k.Protocol
keywire.Algorithm = k.Algorithm
keywire.PublicKey = k.PublicKey
2011-01-28 06:43:55 +11:00
wire := make([]byte, DefaultMsgSize)
n, ok := packStruct(keywire, wire, 0)
if !ok {
return nil
}
wire = wire[:n]
owner := make([]byte, 255)
off, ok1 := packDomainName(k.Hdr.Name, owner, 0)
if !ok1 {
return nil
}
owner = owner[:off]
2011-03-16 05:41:28 +11:00
// RFC4034:
// digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA);
// "|" denotes concatenation
// DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key.
// digest buffer
digest := append(owner, wire...) // another copy TODO(mg)
switch h {
case HashSHA1:
s := sha1.New()
io.WriteString(s, string(digest))
ds.Digest = hex.EncodeToString(s.Sum())
case HashSHA256:
s := sha256.New()
io.WriteString(s, string(digest))
ds.Digest = hex.EncodeToString(s.Sum())
case HashGOST94:
2011-01-18 21:34:48 +11:00
/* I have no clue */
default:
return nil
}
return ds
}
// Sign an RRSet. The Signature needs to be filled in with
// the values: Inception, Expiration, KeyTag, SignerName and Algorithm.
2011-01-27 19:29:11 +11:00
// The rest is copied from the RRset. Returns true when the signing went OK.
// The Signature data in the RRSIG is filled by this method.
2011-01-18 07:10:48 +11:00
// There is no check if rrset is a proper (RFC 2181) RRSet.
func (s *RR_RRSIG) Sign(k PrivateKey, rrset RRset) bool {
if k == nil {
return false
}
// s.Inception and s.Expiration may be 0 (rollover etc.), the rest must be set
2011-01-18 21:34:48 +11:00
if s.KeyTag == 0 || len(s.SignerName) == 0 || s.Algorithm == 0 {
2011-02-25 02:22:14 +11:00
return false
}
s.Hdr.Rrtype = TypeRRSIG
s.Hdr.Name = rrset[0].Header().Name
s.Hdr.Class = rrset[0].Header().Class
2011-01-18 21:34:48 +11:00
s.OrigTtl = rrset[0].Header().Ttl
s.TypeCovered = rrset[0].Header().Rrtype
s.TypeCovered = rrset[0].Header().Rrtype
s.Labels = LabelCount(rrset[0].Header().Name)
2011-02-25 02:22:14 +11:00
if strings.HasPrefix(rrset[0].Header().Name, "*") {
s.Labels-- // wildcards, remove from label count
}
2011-02-25 02:22:14 +11:00
sort.Sort(rrset)
sigwire := new(rrsigWireFmt)
sigwire.TypeCovered = s.TypeCovered
sigwire.Algorithm = s.Algorithm
sigwire.Labels = s.Labels
sigwire.OrigTtl = s.OrigTtl
sigwire.Expiration = s.Expiration
sigwire.Inception = s.Inception
sigwire.KeyTag = s.KeyTag
sigwire.SignerName = s.SignerName
// Create the desired binary blob
2011-01-27 19:38:52 +11:00
signdata := make([]byte, DefaultMsgSize)
n, ok := packStruct(sigwire, signdata, 0)
if !ok {
return false
}
signdata = signdata[:n]
2011-02-25 02:22:14 +11:00
wire := rawSignatureData(rrset, s)
if wire == nil {
return false
}
signdata = append(signdata, wire...)
var signature []byte
var err os.Error
switch s.Algorithm {
case AlgRSASHA1, AlgRSASHA256, AlgRSASHA512, AlgRSAMD5:
//pubkey := k.pubKeyRSA() // Get the key, need privkey representation
// Setup the hash as defined for this alg.
var h hash.Hash
2011-02-02 19:05:25 +11:00
var ch crypto.Hash
switch s.Algorithm {
case AlgRSAMD5:
h = md5.New()
2011-02-02 19:05:25 +11:00
ch = crypto.MD5
case AlgRSASHA1:
h = sha1.New()
2011-02-02 19:05:25 +11:00
ch = crypto.SHA1
case AlgRSASHA256:
h = sha256.New()
2011-02-02 19:05:25 +11:00
ch = crypto.SHA256
case AlgRSASHA512:
h = sha512.New()
2011-02-02 19:05:25 +11:00
ch = crypto.SHA512
2011-01-18 21:34:48 +11:00
default:
// Illegal Alg
return false
}
// Need privakey representation in godns TODO(mg) see keygen.go
io.WriteString(h, string(signdata))
sighash := h.Sum()
// Get the key from the interface
switch p := k.(type) {
case *rsa.PrivateKey:
signature, err = rsa.SignPKCS1v15(rand.Reader, p, ch, sighash)
if err != nil {
return false
}
s.Signature = unpackBase64(signature)
default:
// Not given the correct key
return false
}
case AlgDH:
case AlgDSA:
case AlgECC:
case AlgECCGOST:
}
return true
2011-01-14 03:14:14 +11:00
}
2011-01-27 19:29:11 +11:00
// Validate an RRSet with the signature and key. This is only the
// cryptographic test, the signature validity period most be checked separately.
func (s *RR_RRSIG) Verify(k *RR_DNSKEY, rrset RRset) bool {
// Frist the easy checks
if s.KeyTag != k.KeyTag() {
return false
}
if s.Hdr.Class != k.Hdr.Class {
return false
}
if s.Algorithm != k.Algorithm {
return false
}
if s.SignerName != k.Hdr.Name {
return false
}
for _, r := range rrset {
if r.Header().Class != s.Hdr.Class {
return false
}
if r.Header().Rrtype != s.TypeCovered {
return false
}
}
sort.Sort(rrset)
// RFC 4035 5.3.2. Reconstructing the Signed Data
// Copy the sig, except the rrsig data
sigwire := new(rrsigWireFmt)
sigwire.TypeCovered = s.TypeCovered
sigwire.Algorithm = s.Algorithm
sigwire.Labels = s.Labels
sigwire.OrigTtl = s.OrigTtl
sigwire.Expiration = s.Expiration
sigwire.Inception = s.Inception
sigwire.KeyTag = s.KeyTag
sigwire.SignerName = s.SignerName
// Create the desired binary blob
2011-01-27 19:38:52 +11:00
signeddata := make([]byte, DefaultMsgSize)
n, ok := packStruct(sigwire, signeddata, 0)
if !ok {
return false
}
signeddata = signeddata[:n]
2011-02-25 02:22:14 +11:00
wire := rawSignatureData(rrset, s)
if wire == nil {
return false
}
signeddata = append(signeddata, wire...)
sigbuf := s.sigBuf() // Get the binary signature data
var err os.Error
switch s.Algorithm {
case AlgRSASHA1, AlgRSASHA256, AlgRSASHA512, AlgRSAMD5:
pubkey := k.pubKeyRSA() // Get the key
// Setup the hash as defined for this alg.
var h hash.Hash
2011-02-02 19:05:25 +11:00
var ch crypto.Hash
switch s.Algorithm {
case AlgRSAMD5:
h = md5.New()
2011-02-02 19:05:25 +11:00
ch = crypto.MD5
case AlgRSASHA1:
h = sha1.New()
2011-02-02 19:05:25 +11:00
ch = crypto.SHA1
case AlgRSASHA256:
h = sha256.New()
2011-02-02 19:05:25 +11:00
ch = crypto.SHA256
case AlgRSASHA512:
h = sha512.New()
2011-02-02 19:05:25 +11:00
ch = crypto.SHA512
}
io.WriteString(h, string(signeddata))
sighash := h.Sum()
err = rsa.VerifyPKCS1v15(pubkey, ch, sighash, sigbuf)
case AlgDH:
case AlgDSA:
case AlgECC:
case AlgECCGOST:
2011-01-18 21:34:48 +11:00
default:
// Unknown Alg
return false
}
return err == nil
}
2011-01-27 19:29:11 +11:00
// Use RFC1982 to calculate if a signature period is valid.
func (s *RR_RRSIG) ValidityPeriod() bool {
utc := time.UTC().Seconds()
modi := (int64(s.Inception) - utc) / Year68
mode := (int64(s.Expiration) - utc) / Year68
ti := int64(s.Inception) + (modi * Year68)
te := int64(s.Expiration) + (mode * Year68)
return ti <= utc && utc <= te
}
// Return the signatures base64 encodedig sigdata as a byte slice.
func (s *RR_RRSIG) sigBuf() []byte {
sigbuf, err := packBase64([]byte(s.Signature))
if err != nil {
return nil
}
return sigbuf
}
// Extract the RSA public key from the Key record
func (k *RR_DNSKEY) pubKeyRSA() *rsa.PublicKey {
keybuf, err := packBase64([]byte(k.PublicKey))
if err != nil {
return nil
}
// RFC 2537/3110, section 2. RSA Public KEY Resource Records
// Length is in the 0th byte, unless its zero, then it
// it in bytes 1 and 2 and its a 16 bit number
explen := uint16(keybuf[0])
keyoff := 1
if explen == 0 {
explen = uint16(keybuf[1])<<8 | uint16(keybuf[2])
keyoff = 3
}
pubkey := new(rsa.PublicKey)
pubkey.N = big.NewInt(0)
shift := (explen - 1) * 8
for i := int(explen - 1); i >= 0; i-- {
pubkey.E += int(keybuf[keyoff+i]) << shift
shift -= 8
}
pubkey.N.SetBytes(keybuf[keyoff+int(explen):])
return pubkey
}
// Set the public key (the value E and N)
2011-03-24 19:02:19 +11:00
func (k *RR_DNSKEY) setPublicKeyRSA(_E int, _N *big.Int) bool {
if _E == 0 {
return false
}
if _N == nil {
return false
}
2011-01-18 06:29:40 +11:00
buf := exponentToBuf(_E)
buf = append(buf, _N.Bytes()...)
k.PublicKey = unpackBase64(buf)
2011-03-24 19:02:19 +11:00
return true
2011-01-18 04:13:52 +11:00
}
// Set the public key (the value E and N)
2011-01-18 06:18:51 +11:00
// RFC 3110: Section 2. RSA Public KEY Resource Records
2011-01-18 04:13:52 +11:00
func exponentToBuf(_E int) []byte {
2011-01-18 06:29:40 +11:00
var buf []byte
i := big.NewInt(int64(_E))
if len(i.Bytes()) < 256 {
buf = make([]byte, 1)
buf[0] = uint8(len(i.Bytes()))
} else {
buf = make([]byte, 3)
buf[0] = 0
buf[1] = uint8(len(i.Bytes()) >> 8)
buf[2] = uint8(len(i.Bytes()))
}
buf = append(buf, i.Bytes()...)
return buf
}
// return a saw signature data
func rawSignatureData(rrset RRset, s *RR_RRSIG) (buf []byte) {
for _, r := range rrset {
h := r.Header()
// RFC 4034: 6.2. Canonical RR Form. (2) - domain name to lowercase
name := h.Name
h.Name = strings.ToLower(h.Name)
// 6.2. Canonical RR Form. (3) - domain rdata to lowercaser
switch h.Rrtype {
case TypeNS, TypeCNAME, TypeSOA, TypeMB, TypeMG, TypeMR, TypePTR:
case TypeHINFO, TypeMINFO, TypeMX /* TypeRP, TypeAFSDB, TypeRT */ :
case TypeSIG /* TypePX, TypeNXT /* TypeNAPTR, TypeKX */ :
case TypeSRV, /* TypeDNAME, TypeA6 */ TypeRRSIG, TypeNSEC:
// lower case the domain rdata //
}
// 6.2. Canonical RR Form. (4) - wildcards
2011-02-25 02:22:14 +11:00
// dont have to do anything
// 6.2. Canonical RR Form. (5) - origTTL
ttl := h.Ttl
h.Ttl = s.OrigTtl
wire := make([]byte, DefaultMsgSize)
off, ok1 := packRR(r, wire, 0)
if !ok1 {
return nil
}
wire = wire[:off]
2011-02-25 01:31:58 +11:00
h.Ttl = ttl // restore the order in the universe TODO(mg) work on copy
h.Name = name
if !ok1 {
return nil
}
2011-02-25 02:22:14 +11:00
buf = append(buf, wire...)
}
return
}
// Map for algorithm names.
var alg_str = map[uint8]string{
AlgRSAMD5: "RSAMD5",
AlgDH: "DH",
AlgDSA: "DSA",
AlgRSASHA1: "RSASHA1",
AlgRSASHA256: "RSASHA256",
AlgRSASHA512: "RSASHA512",
AlgECCGOST: "ECC-GOST",
}