dns/dnssec.go

357 lines
8.9 KiB
Go
Raw Normal View History

package dns
import (
"crypto/md5"
"crypto/sha1"
"crypto/sha256"
"crypto/sha512"
"crypto/rsa"
"encoding/hex"
"encoding/base64"
"hash"
"time"
"io"
"big"
"sort"
"strings"
"os"
)
// DNSSEC encryption algorithm codes.
const (
// DNSSEC algorithms
AlgRSAMD5 = 1
AlgDH = 2
AlgDSA = 3
AlgECC = 4
AlgRSASHA1 = 5
AlgRSASHA256 = 8
AlgRSASHA512 = 10
AlgECCGOST = 12
)
// DNSSEC hashing codes.
const (
HashSHA1 = iota
HashSHA256
HashGOST94
)
// The RRSIG needs to be converted to wireformat with some of
// the rdata (the signature) missing. Use this struct to easy
// the conversion (and re-use the pack/unpack functions.
type rrsigWireFmt struct {
TypeCovered uint16
Algorithm uint8
Labels uint8
OrigTtl uint32
Expiration uint32
Inception uint32
KeyTag uint16
SignerName string "domain-name"
/* No Signature */
}
// Used for converting DNSKEY's rdata to wirefmt.
type dnskeyWireFmt struct {
Flags uint16
Protocol uint8
Algorithm uint8
PubKey string "base64"
}
// Calculate the keytag of the DNSKEY.
func (k *RR_DNSKEY) KeyTag() uint16 {
var keytag int
switch k.Algorithm {
case AlgRSAMD5:
println("Keytag RSAMD5. Todo")
keytag = 0
default:
keywire := new(dnskeyWireFmt)
keywire.Flags = k.Flags
keywire.Protocol = k.Protocol
keywire.Algorithm = k.Algorithm
keywire.PubKey = k.PubKey
wire := make([]byte, 2048) // TODO(mg) lenght!
n, ok := packStruct(keywire, wire, 0)
if !ok {
return 0
}
wire = wire[:n]
for i, v := range wire {
if i&1 != 0 {
keytag += int(v) // must be larger than uint32
} else {
keytag += int(v) << 8
}
}
keytag += (keytag >> 16) & 0xFFFF
keytag &= 0xFFFF
}
return uint16(keytag)
}
// Convert an DNSKEY record to a DS record.
func (k *RR_DNSKEY) ToDS(h int) *RR_DS {
ds := new(RR_DS)
ds.Hdr.Name = k.Hdr.Name
ds.Hdr.Class = k.Hdr.Class
ds.Hdr.Ttl = k.Hdr.Ttl
ds.Algorithm = k.Algorithm
ds.DigestType = uint8(h)
ds.KeyTag = k.KeyTag()
keywire := new(dnskeyWireFmt)
keywire.Flags = k.Flags
keywire.Protocol = k.Protocol
keywire.Algorithm = k.Algorithm
keywire.PubKey = k.PubKey
wire := make([]byte, 2048) // TODO(mg) lenght!
n, ok := packStruct(keywire, wire, 0)
if !ok {
return nil
}
wire = wire[:n]
owner := make([]byte, 255)
off, ok1 := packDomainName(k.Hdr.Name, owner, 0)
if !ok1 {
return nil
}
owner = owner[:off]
/*
* from RFC4034
* digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA);
* "|" denotes concatenation
* DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key.
*/
// digest buffer
digest := append(owner, wire...) // another copy TODO(mg)
switch h {
case HashSHA1:
s := sha1.New()
io.WriteString(s, string(digest))
ds.Digest = hex.EncodeToString(s.Sum())
case HashSHA256:
s := sha256.New()
io.WriteString(s, string(digest))
ds.Digest = hex.EncodeToString(s.Sum())
case HashGOST94:
default:
// wrong hash value
return nil
}
return ds
}
// Sign rrset with k and return the signature RR. There
// is no check if rrset is a proper (RFC 2181) RRSet
func (k *RR_DNSKEY) Sign(rrset RRset, expiration, inception uint32) *RR_RRSIG {
sig := new(RR_RRSIG)
sig.Hdr.Name = rrset[0].Header().Name
sig.Hdr.Class = rrset[0].Header().Class
sig.Hdr.Rrtype = TypeRRSIG
sig.Hdr.Ttl = rrset[0].Header().Ttl // re-use TTL of RRset
sig.Inception = inception
sig.Expiration = expiration
sig.KeyTag = k.KeyTag()
sig.SignerName = k.Hdr.Name
sig.Labels = uint8(labelCount(rrset[0].Header().Name))
sig.TypeCovered = rrset[0].Header().Rrtype
sigwire := new(rrsigWireFmt)
sigwire.TypeCovered = sig.TypeCovered
sigwire.Algorithm = sig.Algorithm
sigwire.Labels = sig.Labels
sigwire.OrigTtl = sig.OrigTtl
sigwire.Expiration = sig.Expiration
sigwire.Inception = sig.Inception
sigwire.KeyTag = sig.KeyTag
sigwire.SignerName = sig.SignerName
return nil
2011-01-14 03:14:14 +11:00
}
// Validate an rrset with the signature and key. This is the
// cryptographic test, the validity period most be check separately.
func (s *RR_RRSIG) Verify(k *RR_DNSKEY, rrset RRset) bool {
// Frist the easy checks
if s.KeyTag != k.KeyTag() {
println(s.KeyTag)
println(k.KeyTag())
return false
}
if s.Hdr.Class != k.Hdr.Class {
println("Class")
return false
}
if s.Algorithm != k.Algorithm {
println("Class")
return false
}
if s.SignerName != k.Hdr.Name {
println(s.SignerName)
println(k.Hdr.Name)
return false
}
for _, r := range rrset {
if r.Header().Class != s.Hdr.Class {
return false
}
if r.Header().Rrtype != s.TypeCovered {
return false
}
// Number of labels. TODO(mg) add helper functions
}
sort.Sort(rrset)
// RFC 4035 5.3.2. Reconstructing the Signed Data
// Copy the sig, except the rrsig data
sigwire := new(rrsigWireFmt)
sigwire.TypeCovered = s.TypeCovered
sigwire.Algorithm = s.Algorithm
sigwire.Labels = s.Labels
sigwire.OrigTtl = s.OrigTtl
sigwire.Expiration = s.Expiration
sigwire.Inception = s.Inception
sigwire.KeyTag = s.KeyTag
sigwire.SignerName = s.SignerName
// Create the desired binary blob
signeddata := make([]byte, 4096)
n, ok := packStruct(sigwire, signeddata, 0)
if !ok {
return false
}
signeddata = signeddata[:n]
for _, r := range rrset {
h := r.Header()
// RFC 4034: 6.2. Canonical RR Form. (2) - domain name to lowercase
name := h.Name
h.Name = strings.ToLower(h.Name)
// 6.2. Canonical RR Form. (3) - domain rdata to lowercaser
switch h.Rrtype {
case TypeNS, TypeCNAME, TypeSOA, TypeMB, TypeMG, TypeMR, TypePTR:
case TypeHINFO, TypeMINFO, TypeMX /* TypeRP, TypeAFSDB, TypeRT */ :
case TypeSIG /* TypePX, TypeNXT /* TypeNAPTR, TypeKX */ :
case TypeSRV, /* TypeDNAME, TypeA6 */ TypeRRSIG, TypeNSEC:
// lower case the domain rdata //
}
// 6.2. Canonical RR Form. (4) - wildcards, don't understand
// 6.2. Canonical RR Form. (5) - origTTL
ttl := h.Ttl
h.Ttl = s.OrigTtl
wire := make([]byte, 4096)
off, ok1 := packRR(r, wire, 0)
if !ok1 {
println("Failure to pack")
return false
}
wire = wire[:off]
h.Ttl = ttl // restore the order in the universe
h.Name = name
if !ok1 {
println("Failure to pack")
return false
}
signeddata = append(signeddata, wire...)
}
sigbuf := s.sigBuf() // Get the binary signature data
var err os.Error
switch s.Algorithm {
case AlgRSASHA1, AlgRSASHA256, AlgRSASHA512, AlgRSAMD5:
pubkey := k.pubKeyRSA() // Get the key
// Setup the hash as defined for this alg.
var h hash.Hash
var ch rsa.PKCS1v15Hash
switch s.Algorithm {
case AlgRSAMD5:
h = md5.New()
ch = rsa.HashMD5
case AlgRSASHA1:
h = sha1.New()
ch = rsa.HashSHA1
case AlgRSASHA256:
h = sha256.New()
ch = rsa.HashSHA256
case AlgRSASHA512:
h = sha512.New()
ch = rsa.HashSHA512
}
io.WriteString(h, string(signeddata))
sighash := h.Sum()
err = rsa.VerifyPKCS1v15(pubkey, ch, sighash, sigbuf)
case AlgDH:
case AlgDSA:
case AlgECC:
case AlgECCGOST:
}
return err == nil
}
// Using RFC1982 calculate if a signature period is valid
func (s *RR_RRSIG) PeriodOK() bool {
utc := time.UTC().Seconds()
modi := (int64(s.Inception) - utc) / Year68
mode := (int64(s.Expiration) - utc) / Year68
ti := int64(s.Inception) + (modi * Year68)
te := int64(s.Expiration) + (mode * Year68)
return ti <= utc && utc <= te
}
// Return the signatures base64 encodedig sigdata as a byte slice.
func (s *RR_RRSIG) sigBuf() []byte {
sigbuf := make([]byte, 1024) // TODO(mg) length!
sigbuflen := base64.StdEncoding.DecodedLen(len(s.Signature))
sigbuflen, _ = base64.StdEncoding.Decode(sigbuf[0:sigbuflen], []byte(s.Signature))
sigbuf = sigbuf[:sigbuflen]
return sigbuf
}
// Extract the RSA public key from the Key record
func (k *RR_DNSKEY) pubKeyRSA() *rsa.PublicKey {
// Buffer holding the key data
keybuf := make([]byte, 1024)
keybuflen := base64.StdEncoding.DecodedLen(len(k.PubKey))
keybuflen, _ = base64.StdEncoding.Decode(keybuf[0:keybuflen], []byte(k.PubKey))
keybuf = keybuf[:keybuflen]
// RFC 2537/3110, section 2. RSA Public KEY Resource Records
// Length is in the 0th byte, unless its zero, then it
// it in bytes 1 and 2 and its a 16 bit number
explen := uint16(keybuf[0])
keyoff := 1
if explen == 0 {
explen = uint16(keybuf[1])<<8 | uint16(keybuf[2])
keyoff = 3
}
pubkey := new(rsa.PublicKey)
pubkey.N = big.NewInt(0)
shift := (explen - 1) * 8
for i := int(explen - 1); i >= 0; i-- {
pubkey.E += int(keybuf[keyoff+i]) << shift
shift -= 8
}
pubkey.N.SetBytes(keybuf[keyoff+int(explen):])
return pubkey
}
// Map for algorithm names.
var alg_str = map[uint8]string{
AlgRSAMD5: "RSAMD5",
AlgDH: "DH",
AlgDSA: "DSA",
AlgRSASHA1: "RSASHA1",
AlgRSASHA256: "RSASHA256",
AlgRSASHA512: "RSASHA512",
AlgECCGOST: "ECC-GOST",
}