package brotli import "encoding/binary" /* Copyright 2016 Google Inc. All Rights Reserved. Distributed under MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT */ func (*h10) HashTypeLength() uint { return 4 } func (*h10) StoreLookahead() uint { return 128 } func hashBytesH10(data []byte) uint32 { var h uint32 = binary.LittleEndian.Uint32(data) * kHashMul32 /* The higher bits contain more mixture from the multiplication, so we take our results from there. */ return h >> (32 - 17) } /* A (forgetful) hash table where each hash bucket contains a binary tree of sequences whose first 4 bytes share the same hash code. Each sequence is 128 long and is identified by its starting position in the input data. The binary tree is sorted by the lexicographic order of the sequences, and it is also a max-heap with respect to the starting positions. */ type h10 struct { hasherCommon window_mask_ uint buckets_ [1 << 17]uint32 invalid_pos_ uint32 forest []uint32 } func (h *h10) Initialize(params *encoderParams) { h.window_mask_ = (1 << params.lgwin) - 1 h.invalid_pos_ = uint32(0 - h.window_mask_) var num_nodes uint = uint(1) << params.lgwin h.forest = make([]uint32, 2*num_nodes) } func (h *h10) Prepare(one_shot bool, input_size uint, data []byte) { var invalid_pos uint32 = h.invalid_pos_ var i uint32 for i = 0; i < 1<<17; i++ { h.buckets_[i] = invalid_pos } } func leftChildIndexH10(self *h10, pos uint) uint { return 2 * (pos & self.window_mask_) } func rightChildIndexH10(self *h10, pos uint) uint { return 2*(pos&self.window_mask_) + 1 } /* Stores the hash of the next 4 bytes and in a single tree-traversal, the hash bucket's binary tree is searched for matches and is re-rooted at the current position. If less than 128 data is available, the hash bucket of the current position is searched for matches, but the state of the hash table is not changed, since we can not know the final sorting order of the current (incomplete) sequence. This function must be called with increasing cur_ix positions. */ func storeAndFindMatchesH10(self *h10, data []byte, cur_ix uint, ring_buffer_mask uint, max_length uint, max_backward uint, best_len *uint, matches []backwardMatch) []backwardMatch { var cur_ix_masked uint = cur_ix & ring_buffer_mask var max_comp_len uint = brotli_min_size_t(max_length, 128) var should_reroot_tree bool = (max_length >= 128) var key uint32 = hashBytesH10(data[cur_ix_masked:]) var forest []uint32 = self.forest var prev_ix uint = uint(self.buckets_[key]) var node_left uint = leftChildIndexH10(self, cur_ix) var node_right uint = rightChildIndexH10(self, cur_ix) var best_len_left uint = 0 var best_len_right uint = 0 var depth_remaining uint /* The forest index of the rightmost node of the left subtree of the new root, updated as we traverse and re-root the tree of the hash bucket. */ /* The forest index of the leftmost node of the right subtree of the new root, updated as we traverse and re-root the tree of the hash bucket. */ /* The match length of the rightmost node of the left subtree of the new root, updated as we traverse and re-root the tree of the hash bucket. */ /* The match length of the leftmost node of the right subtree of the new root, updated as we traverse and re-root the tree of the hash bucket. */ if should_reroot_tree { self.buckets_[key] = uint32(cur_ix) } for depth_remaining = 64; ; depth_remaining-- { var backward uint = cur_ix - prev_ix var prev_ix_masked uint = prev_ix & ring_buffer_mask if backward == 0 || backward > max_backward || depth_remaining == 0 { if should_reroot_tree { forest[node_left] = self.invalid_pos_ forest[node_right] = self.invalid_pos_ } break } { var cur_len uint = brotli_min_size_t(best_len_left, best_len_right) var len uint assert(cur_len <= 128) len = cur_len + findMatchLengthWithLimit(data[cur_ix_masked+cur_len:], data[prev_ix_masked+cur_len:], max_length-cur_len) if matches != nil && len > *best_len { *best_len = uint(len) initBackwardMatch(&matches[0], backward, uint(len)) matches = matches[1:] } if len >= max_comp_len { if should_reroot_tree { forest[node_left] = forest[leftChildIndexH10(self, prev_ix)] forest[node_right] = forest[rightChildIndexH10(self, prev_ix)] } break } if data[cur_ix_masked+len] > data[prev_ix_masked+len] { best_len_left = uint(len) if should_reroot_tree { forest[node_left] = uint32(prev_ix) } node_left = rightChildIndexH10(self, prev_ix) prev_ix = uint(forest[node_left]) } else { best_len_right = uint(len) if should_reroot_tree { forest[node_right] = uint32(prev_ix) } node_right = leftChildIndexH10(self, prev_ix) prev_ix = uint(forest[node_right]) } } } return matches } /* Finds all backward matches of &data[cur_ix & ring_buffer_mask] up to the length of max_length and stores the position cur_ix in the hash table. Sets *num_matches to the number of matches found, and stores the found matches in matches[0] to matches[*num_matches - 1]. The matches will be sorted by strictly increasing length and (non-strictly) increasing distance. */ func findAllMatchesH10(handle *h10, dictionary *encoderDictionary, data []byte, ring_buffer_mask uint, cur_ix uint, max_length uint, max_backward uint, gap uint, params *encoderParams, matches []backwardMatch) uint { var orig_matches []backwardMatch = matches var cur_ix_masked uint = cur_ix & ring_buffer_mask var best_len uint = 1 var short_match_max_backward uint if params.quality != hqZopflificationQuality { short_match_max_backward = 16 } else { short_match_max_backward = 64 } var stop uint = cur_ix - short_match_max_backward var dict_matches [maxStaticDictionaryMatchLen + 1]uint32 var i uint if cur_ix < short_match_max_backward { stop = 0 } for i = cur_ix - 1; i > stop && best_len <= 2; i-- { var prev_ix uint = i var backward uint = cur_ix - prev_ix if backward > max_backward { break } prev_ix &= ring_buffer_mask if data[cur_ix_masked] != data[prev_ix] || data[cur_ix_masked+1] != data[prev_ix+1] { continue } { var len uint = findMatchLengthWithLimit(data[prev_ix:], data[cur_ix_masked:], max_length) if len > best_len { best_len = uint(len) initBackwardMatch(&matches[0], backward, uint(len)) matches = matches[1:] } } } if best_len < max_length { matches = storeAndFindMatchesH10(handle, data, cur_ix, ring_buffer_mask, max_length, max_backward, &best_len, matches) } for i = 0; i <= maxStaticDictionaryMatchLen; i++ { dict_matches[i] = kInvalidMatch } { var minlen uint = brotli_max_size_t(4, best_len+1) if findAllStaticDictionaryMatches(dictionary, data[cur_ix_masked:], minlen, max_length, dict_matches[0:]) { var maxlen uint = brotli_min_size_t(maxStaticDictionaryMatchLen, max_length) var l uint for l = minlen; l <= maxlen; l++ { var dict_id uint32 = dict_matches[l] if dict_id < kInvalidMatch { var distance uint = max_backward + gap + uint(dict_id>>5) + 1 if distance <= params.dist.max_distance { initDictionaryBackwardMatch(&matches[0], distance, l, uint(dict_id&31)) matches = matches[1:] } } } } } return uint(-cap(matches) + cap(orig_matches)) } /* Stores the hash of the next 4 bytes and re-roots the binary tree at the current sequence, without returning any matches. REQUIRES: ix + 128 <= end-of-current-block */ func (h *h10) Store(data []byte, mask uint, ix uint) { var max_backward uint = h.window_mask_ - windowGap + 1 /* Maximum distance is window size - 16, see section 9.1. of the spec. */ storeAndFindMatchesH10(h, data, ix, mask, 128, max_backward, nil, nil) } func (h *h10) StoreRange(data []byte, mask uint, ix_start uint, ix_end uint) { var i uint = ix_start var j uint = ix_start if ix_start+63 <= ix_end { i = ix_end - 63 } if ix_start+512 <= i { for ; j < i; j += 8 { h.Store(data, mask, j) } } for ; i < ix_end; i++ { h.Store(data, mask, i) } } func (h *h10) StitchToPreviousBlock(num_bytes uint, position uint, ringbuffer []byte, ringbuffer_mask uint) { if num_bytes >= h.HashTypeLength()-1 && position >= 128 { var i_start uint = position - 128 + 1 var i_end uint = brotli_min_size_t(position, i_start+num_bytes) /* Store the last `128 - 1` positions in the hasher. These could not be calculated before, since they require knowledge of both the previous and the current block. */ var i uint for i = i_start; i < i_end; i++ { /* Maximum distance is window size - 16, see section 9.1. of the spec. Furthermore, we have to make sure that we don't look further back from the start of the next block than the window size, otherwise we could access already overwritten areas of the ring-buffer. */ var max_backward uint = h.window_mask_ - brotli_max_size_t(windowGap-1, position-i) /* We know that i + 128 <= position + num_bytes, i.e. the end of the current block and that we have at least 128 tail in the ring-buffer. */ storeAndFindMatchesH10(h, ringbuffer, i, ringbuffer_mask, 128, max_backward, nil, nil) } } } /* MAX_NUM_MATCHES == 64 + MAX_TREE_SEARCH_DEPTH */ const maxNumMatchesH10 = 128 func (*h10) FindLongestMatch(dictionary *encoderDictionary, data []byte, ring_buffer_mask uint, distance_cache []int, cur_ix uint, max_length uint, max_backward uint, gap uint, max_distance uint, out *hasherSearchResult) { panic("unimplemented") } func (*h10) PrepareDistanceCache(distance_cache []int) { panic("unimplemented") }