// Copyright 2019+ Klaus Post. All rights reserved. // License information can be found in the LICENSE file. // Based on work by Yann Collet, released under BSD License. package zstd import ( "encoding/binary" "errors" "fmt" "io" ) const ( tablelogAbsoluteMax = 9 ) const ( /*!MEMORY_USAGE : * Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) * Increasing memory usage improves compression ratio * Reduced memory usage can improve speed, due to cache effect * Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */ maxMemoryUsage = tablelogAbsoluteMax + 2 maxTableLog = maxMemoryUsage - 2 maxTablesize = 1 << maxTableLog maxTableMask = (1 << maxTableLog) - 1 minTablelog = 5 maxSymbolValue = 255 ) // fseDecoder provides temporary storage for compression and decompression. type fseDecoder struct { dt [maxTablesize]decSymbol // Decompression table. symbolLen uint16 // Length of active part of the symbol table. actualTableLog uint8 // Selected tablelog. maxBits uint8 // Maximum number of additional bits // used for table creation to avoid allocations. stateTable [256]uint16 norm [maxSymbolValue + 1]int16 preDefined bool } // tableStep returns the next table index. func tableStep(tableSize uint32) uint32 { return (tableSize >> 1) + (tableSize >> 3) + 3 } // readNCount will read the symbol distribution so decoding tables can be constructed. func (s *fseDecoder) readNCount(b *byteReader, maxSymbol uint16) error { var ( charnum uint16 previous0 bool ) if b.remain() < 4 { return errors.New("input too small") } bitStream := b.Uint32NC() nbBits := uint((bitStream & 0xF) + minTablelog) // extract tableLog if nbBits > tablelogAbsoluteMax { println("Invalid tablelog:", nbBits) return errors.New("tableLog too large") } bitStream >>= 4 bitCount := uint(4) s.actualTableLog = uint8(nbBits) remaining := int32((1 << nbBits) + 1) threshold := int32(1 << nbBits) gotTotal := int32(0) nbBits++ for remaining > 1 && charnum <= maxSymbol { if previous0 { //println("prev0") n0 := charnum for (bitStream & 0xFFFF) == 0xFFFF { //println("24 x 0") n0 += 24 if r := b.remain(); r > 5 { b.advance(2) // The check above should make sure we can read 32 bits bitStream = b.Uint32NC() >> bitCount } else { // end of bit stream bitStream >>= 16 bitCount += 16 } } //printf("bitstream: %d, 0b%b", bitStream&3, bitStream) for (bitStream & 3) == 3 { n0 += 3 bitStream >>= 2 bitCount += 2 } n0 += uint16(bitStream & 3) bitCount += 2 if n0 > maxSymbolValue { return errors.New("maxSymbolValue too small") } //println("inserting ", n0-charnum, "zeroes from idx", charnum, "ending before", n0) for charnum < n0 { s.norm[uint8(charnum)] = 0 charnum++ } if r := b.remain(); r >= 7 || r-int(bitCount>>3) >= 4 { b.advance(bitCount >> 3) bitCount &= 7 // The check above should make sure we can read 32 bits bitStream = b.Uint32NC() >> bitCount } else { bitStream >>= 2 } } max := (2*threshold - 1) - remaining var count int32 if int32(bitStream)&(threshold-1) < max { count = int32(bitStream) & (threshold - 1) if debugAsserts && nbBits < 1 { panic("nbBits underflow") } bitCount += nbBits - 1 } else { count = int32(bitStream) & (2*threshold - 1) if count >= threshold { count -= max } bitCount += nbBits } // extra accuracy count-- if count < 0 { // -1 means +1 remaining += count gotTotal -= count } else { remaining -= count gotTotal += count } s.norm[charnum&0xff] = int16(count) charnum++ previous0 = count == 0 for remaining < threshold { nbBits-- threshold >>= 1 } if r := b.remain(); r >= 7 || r-int(bitCount>>3) >= 4 { b.advance(bitCount >> 3) bitCount &= 7 // The check above should make sure we can read 32 bits bitStream = b.Uint32NC() >> (bitCount & 31) } else { bitCount -= (uint)(8 * (len(b.b) - 4 - b.off)) b.off = len(b.b) - 4 bitStream = b.Uint32() >> (bitCount & 31) } } s.symbolLen = charnum if s.symbolLen <= 1 { return fmt.Errorf("symbolLen (%d) too small", s.symbolLen) } if s.symbolLen > maxSymbolValue+1 { return fmt.Errorf("symbolLen (%d) too big", s.symbolLen) } if remaining != 1 { return fmt.Errorf("corruption detected (remaining %d != 1)", remaining) } if bitCount > 32 { return fmt.Errorf("corruption detected (bitCount %d > 32)", bitCount) } if gotTotal != 1<> 3) return s.buildDtable() } func (s *fseDecoder) mustReadFrom(r io.Reader) { fatalErr := func(err error) { if err != nil { panic(err) } } // dt [maxTablesize]decSymbol // Decompression table. // symbolLen uint16 // Length of active part of the symbol table. // actualTableLog uint8 // Selected tablelog. // maxBits uint8 // Maximum number of additional bits // // used for table creation to avoid allocations. // stateTable [256]uint16 // norm [maxSymbolValue + 1]int16 // preDefined bool fatalErr(binary.Read(r, binary.LittleEndian, &s.dt)) fatalErr(binary.Read(r, binary.LittleEndian, &s.symbolLen)) fatalErr(binary.Read(r, binary.LittleEndian, &s.actualTableLog)) fatalErr(binary.Read(r, binary.LittleEndian, &s.maxBits)) fatalErr(binary.Read(r, binary.LittleEndian, &s.stateTable)) fatalErr(binary.Read(r, binary.LittleEndian, &s.norm)) fatalErr(binary.Read(r, binary.LittleEndian, &s.preDefined)) } // decSymbol contains information about a state entry, // Including the state offset base, the output symbol and // the number of bits to read for the low part of the destination state. // Using a composite uint64 is faster than a struct with separate members. type decSymbol uint64 func newDecSymbol(nbits, addBits uint8, newState uint16, baseline uint32) decSymbol { return decSymbol(nbits) | (decSymbol(addBits) << 8) | (decSymbol(newState) << 16) | (decSymbol(baseline) << 32) } func (d decSymbol) nbBits() uint8 { return uint8(d) } func (d decSymbol) addBits() uint8 { return uint8(d >> 8) } func (d decSymbol) newState() uint16 { return uint16(d >> 16) } func (d decSymbol) baselineInt() int { return int(d >> 32) } func (d *decSymbol) setNBits(nBits uint8) { const mask = 0xffffffffffffff00 *d = (*d & mask) | decSymbol(nBits) } func (d *decSymbol) setAddBits(addBits uint8) { const mask = 0xffffffffffff00ff *d = (*d & mask) | (decSymbol(addBits) << 8) } func (d *decSymbol) setNewState(state uint16) { const mask = 0xffffffff0000ffff *d = (*d & mask) | decSymbol(state)<<16 } func (d *decSymbol) setExt(addBits uint8, baseline uint32) { const mask = 0xffff00ff *d = (*d & mask) | (decSymbol(addBits) << 8) | (decSymbol(baseline) << 32) } // decSymbolValue returns the transformed decSymbol for the given symbol. func decSymbolValue(symb uint8, t []baseOffset) (decSymbol, error) { if int(symb) >= len(t) { return 0, fmt.Errorf("rle symbol %d >= max %d", symb, len(t)) } lu := t[symb] return newDecSymbol(0, lu.addBits, 0, lu.baseLine), nil } // setRLE will set the decoder til RLE mode. func (s *fseDecoder) setRLE(symbol decSymbol) { s.actualTableLog = 0 s.maxBits = symbol.addBits() s.dt[0] = symbol } // transform will transform the decoder table into a table usable for // decoding without having to apply the transformation while decoding. // The state will contain the base value and the number of bits to read. func (s *fseDecoder) transform(t []baseOffset) error { tableSize := uint16(1 << s.actualTableLog) s.maxBits = 0 for i, v := range s.dt[:tableSize] { add := v.addBits() if int(add) >= len(t) { return fmt.Errorf("invalid decoding table entry %d, symbol %d >= max (%d)", i, v.addBits(), len(t)) } lu := t[add] if lu.addBits > s.maxBits { s.maxBits = lu.addBits } v.setExt(lu.addBits, lu.baseLine) s.dt[i] = v } return nil } type fseState struct { dt []decSymbol state decSymbol } // Initialize and decodeAsync first state and symbol. func (s *fseState) init(br *bitReader, tableLog uint8, dt []decSymbol) { s.dt = dt br.fill() s.state = dt[br.getBits(tableLog)] } // final returns the current state symbol without decoding the next. func (s decSymbol) final() (int, uint8) { return s.baselineInt(), s.addBits() }