dns/xfr.go

262 lines
5.9 KiB
Go

// Copyright 2011 Miek Gieben. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package dns
import (
"net"
"time"
)
// Envelope is used when doing a transfer with a remote server.
type Envelope struct {
RR []RR // The set of RRs in the answer section of the AXFR reply message.
Error error // If something went wrong, this contains the error.
}
type Transfer struct {
Conn
DialTimeout time.Duration // net.DialTimeout (ns), defaults to 2 * 1e9
ReadTimeout time.Duration // net.Conn.SetReadTimeout value for connections (ns), defaults to 2 * 1e9
WriteTimeout time.Duration // net.Conn.SetWriteTimeout value for connections (ns), defaults to 2 * 1e9
timersOnly bool
}
// In performs a [AI]XFR request (depends on the message's Qtype). It returns
// a channel of *Envelope on which the replies from the server are sent.
// At the end of the transfer the channel is closed.
// The messages are TSIG checked if needed, no other post-processing is performed.
// The caller must dissect the returned messages.
//
// Basic use pattern for receiving an AXFR:
//
// // m contains the AXFR request
// t := new(dns.Transfer)
// c, e := t.In(m, "127.0.0.1:53")
// for env := range c
// // ... deal with env.RR or env.Error
// }
func (t *Transfer) In(q *Msg, a string, env chan *Envelope) (err error) {
co := new(Conn)
timeout := dnsTimeout
if t.DialTimeout != 0 {
timeout = t.DialTimeout
}
co.Conn, err = net.DialTimeout("tcp", a, timeout)
if err != nil {
return err
}
if q.Question[0].Qtype == TypeAXFR {
go t.InAxfr(q.Id, env)
return nil
}
if q.Question[0].Qtype == TypeIXFR {
go t.InAxfr(q.Id, env)
return nil
}
return nil // TODO(miek): some error
}
func (t *Transfer) InAxfr(id uint16, c chan *Envelope) {
first := true
defer t.Close()
defer close(c)
for {
in, err := t.ReadMsg()
if err != nil {
c <- &Envelope{nil, err}
return
}
if id != q.Id {
c <- &Envelope{in.Answer, ErrId}
return
}
if first {
if !checkSOA(in, true) {
c <- &Envelope{in.Answer, ErrSoa}
return
}
first = !first
// only one answer that is SOA, receive more
if len(in.Answer) == 1 {
w.tsigTimersOnly = true
c <- &Envelope{in.Answer, nil}
continue
}
}
if !first {
w.tsigTimersOnly = true // Subsequent envelopes use this.
if checkSOA(in, false) {
c <- &Envelope{in.Answer, nil}
return
}
c <- &Envelope{in.Answer, nil}
}
}
panic("dns: not reached")
}
// re-read 'n stuff must be pushed down
timeout = dnsTimeout
if t.ReadTimeout != 0 {
timeout = t.ReadTimeout
}
co.SetReadDeadline(time.Now().Add(dnsTimeout))
timeout = dnsTimeout
if t.WriteTimeout != 0 {
timeout = t.WriteTimeout
}
co.SetWriteDeadline(time.Now().Add(dnsTimeout))
defer co.Close()
return nil
}
func (t *Transfer) Out(w ResponseWriter, q *Msg, a string) (chan *Envelope, error) {
ch := make(chan *Envelope)
return ch, nil
}
// ReadMsg reads a message from the transfer connection t.
func (t *Transfer) ReadMsg() (*Msg, error) {
m := new(Msg)
p := make([]byte, MaxMsgSize)
n, err := t.Read(p)
if err != nil && n == 0 {
return nil, err
}
p = p[:n]
if err := m.Unpack(p); err != nil {
return nil, err
}
if ts := m.IsTsig(); t != nil {
if _, ok := t.TsigSecret[ts.Hdr.Name]; !ok {
return m, ErrSecret
}
// Need to work on the original message p, as that was used to calculate the tsig.
err = TsigVerify(p, t.TsigSecret[ts.Hdr.Name], t.requestMAC, t.timersOnly)
}
return m, err
}
// WriteMsg write a message throught the transfer connection t.
func (t *Transfer) WriteMsg(m *Msg) (err error) {
var out []byte
if ts := m.IsTsig(); t != nil {
if _, ok := t.TsigSecret[ts.Hdr.Name]; !ok {
return ErrSecret
}
out, t.requestMAC, err = TsigGenerate(m, t.TsigSecret[ts.Hdr.Name], t.requestMAC, t.timersOnly)
} else {
out, err = m.Pack()
}
if err != nil {
return err
}
if _, err = t.Write(out); err != nil {
return err
}
return nil
}
/*
func (w *reply) ixfrIn(q *Msg, c chan *Envelope) {
var serial uint32 // The first serial seen is the current server serial
first := true
defer w.conn.Close()
defer close(c)
for {
in, err := w.receive()
if err != nil {
c <- &Envelope{in.Answer, err}
return
}
if q.Id != in.Id {
c <- &Envelope{in.Answer, ErrId}
return
}
if first {
// A single SOA RR signals "no changes"
if len(in.Answer) == 1 && checkSOA(in, true) {
c <- &Envelope{in.Answer, nil}
return
}
// Check if the returned answer is ok
if !checkSOA(in, true) {
c <- &Envelope{in.Answer, ErrSoa}
return
}
// This serial is important
serial = in.Answer[0].(*SOA).Serial
first = !first
}
// Now we need to check each message for SOA records, to see what we need to do
if !first {
w.tsigTimersOnly = true
// If the last record in the IXFR contains the servers' SOA, we should quit
if v, ok := in.Answer[len(in.Answer)-1].(*SOA); ok {
if v.Serial == serial {
c <- &Envelope{in.Answer, nil}
return
}
}
c <- &Envelope{in.Answer, nil}
}
}
panic("dns: not reached")
}
/*
func checkFirstSOA(in *Msg) bool {
if len(in.Answer) > 0 {
return in.Answer[0].Header().Rrtype == TypeSOA
}
return false
}
func checkLastSOA(in *Msg) bool {
if len(in.Answer) > 0 {
return in.Answer[len(in.Answer)-1].Header().Rrtype == TypeSOA
}
return false
}
/*
func TransferOut(w ResponseWriter, q *Msg, c chan *Envelope, e *error) error {
switch q.Question[0].Qtype {
case TypeAXFR, TypeIXFR:
go xfrOut(w, q, c, e)
return nil
default:
return nil
}
panic("dns: not reached")
}
// TODO(mg): count the RRs and the resulting size.
func xfrOut(w ResponseWriter, req *Msg, c chan *Envelope, e *error) {
rep := new(Msg)
rep.SetReply(req)
rep.Authoritative = true
for x := range c {
// assume it fits
rep.Answer = append(rep.Answer, x.RR...)
if err := w.WriteMsg(rep); e != nil {
*e = err
return
}
w.TsigTimersOnly(true)
rep.Answer = nil
}
}
*/