dns/dns.go

554 lines
13 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Extended and bugfixes by Miek Gieben.
// Package dns implements a full featured interface to the DNS.
// The package allows complete control over what is send out to the DNS.
//
// Resource records are native types. They are not stored in wire format.
// Basic usage pattern for creating a new resource record:
//
// r := new(RR_TXT)
// r.Hdr = RR_Header{Name: "a.miek.nl", Rrtype: TypeTXT, Class: ClassINET, Ttl: 3600}
// r.TXT = "This is the content of the TXT record"
//
// The package dns supports (async) querying/replying, incoming/outgoing Axfr/Ixfr,
// TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing.
//
// The patterns described here are cumulative: earlier declared variables
// are reused.
// In the DNS messages are exchanged. Use pattern for creating one:
//
// message := new(Msg)
// // Set the desired options.
// message.MsgHdr.Recursion_desired = true
// message.Question = make([]Question, 1)
// message.Question[0] = Question{"miek.nl", TypeSOA, ClassINET}
//
// Basic use pattern for synchronize querying of the DNS:
//
// dnsconn := new(Conn)
// dnsconn.RemoteAddr = "127.0.0.1:53"
// inmessage, err := SimpleQuery("udp", dnsconn, message) // or "tcp".
//
// (Asynchronized) querying the DNS is supported. The Query structure
// is used for communicating with the QueryRequest (for sending) and
// QueryReply (for receiving) channels. The channels are globally
// declared in the dns package.
// Basic use pattern for creating such a resolver:
//
// func qhandle(*Conn, *Msg) { /* handle request */ }
//
// func query(e chan os.Error) {
// err := QueryAndServeUDP(qhandle)
// e <- err
// }
// InitQueryChannels()
// err := make(chan os.Error)
// go query(err)
//
// QueryRequest <- Query{Query: message, Conn: dnsconn}
// /* ... later ... */
// reply := <-QueryReply
//
// Server side programming is also supported also by using a Conn structure.
// Basic use pattern for creating an UDP DNS server:
//
// func handle(*Conn, *Msg) { /* handle request */ }
//
// func listen(addr string, e chan os.Error) {
// err := ListenAndServeUDP(addr, handle)
// e <- err
// }
//
// go listen("127.0.0.1:8053", err)
//
package dns
import (
"io"
"os"
"net"
"strconv"
)
const (
Year68 = 2 << (32 - 1) // For RFC1982 (Serial Arithmetic) calculations in 32 bits.
DefaultMsgSize = 4096 // A standard default for larger than 512 packets.
MaxMsgSize = 65536 // Largest possible DNS packet.
DefaultTTL = 3600 // Default Ttl.
)
// Error represents a DNS error
type Error struct {
Error string
Name string
Server net.Addr
Timeout bool
}
func (e *Error) String() string {
if e == nil {
return "<nil>"
}
return e.Error
}
// OLD
// A Conn is the lowest primative in the dns package.
// A Conn holds both the UDP and TCP connection, but only one
// can be active any given time.
type Conn struct {
// The current UDP connection.
UDP *net.UDPConn
// The current TCP connection.
TCP *net.TCPConn
// The remote side of the open connection.
Addr net.Addr
// The remote port number of the open connection.
Port int
// If TSIG is used, this holds all the information.
// If unused it must be nil.
Tsig *Tsig
// Timeout in seconds before giving up on a connection.
Timeout int
// Number of attempts to try to Read/Write from/to a connection.
Attempts int
// The remote addr which is going to be dialed (and queried).
RemoteAddr string
// The local addr used for outgoing queries.
LocalAddr string
// Mangle the packet before writing by feeding it through this function.
Mangle func([]byte) []byte
}
// Dial the remote side with a minimum filled out Conn. Only
// Conn.RemoteAddr is absolutely needed.
// The string n is used to select the transport and it either "udp" or "tcp".
func (d *Conn) Dial(n string) os.Error {
c, err := net.Dial(n, d.LocalAddr, d.RemoteAddr)
if err != nil {
return err
}
switch n {
case "tcp":
d.TCP = c.(*net.TCPConn)
d.Addr = d.TCP.RemoteAddr()
d.Port = d.TCP.RemoteAddr().(*net.TCPAddr).Port
case "udp":
d.UDP = c.(*net.UDPConn)
d.Addr = d.UDP.RemoteAddr()
d.Port = d.UDP.RemoteAddr().(*net.UDPAddr).Port
}
return nil
}
// Dial connects to the remote address raddr on the network net.
// If the string laddr is not empty, it is used as the local address
// for the connection. Any errors are return in err otherwise err is nil.
func Dial(n, laddr, raddr string) (*Conn, os.Error) {
d := new(Conn)
c, err := net.Dial(n, laddr, raddr)
if err != nil {
return nil, err
}
switch n {
case "tcp":
d.TCP = c.(*net.TCPConn)
d.Addr = d.TCP.RemoteAddr()
d.Port = d.TCP.RemoteAddr().(*net.TCPAddr).Port
case "udp":
d.UDP = c.(*net.UDPConn)
d.Addr = d.UDP.RemoteAddr()
d.Port = d.UDP.RemoteAddr().(*net.UDPAddr).Port
}
return d, nil
}
// Fill in a Conn from a TCPConn. If a is nil, the remote address in the
// connection is used.
func (d *Conn) SetTCPConn(l *net.TCPConn, a net.Addr) {
d.TCP = l
d.UDP = nil
if a == nil {
d.Addr = l.RemoteAddr()
} else {
d.Addr = a
}
d.Port = d.Addr.(*net.TCPAddr).Port
}
// Fill in a Conn from a TCPConn. If a is nil, the remote address in the
// connection is used.
func (d *Conn) SetUDPConn(l *net.UDPConn, a net.Addr) {
d.TCP = nil
d.UDP = l
if a == nil {
d.Addr = l.RemoteAddr()
} else {
d.Addr = a
}
d.Port = d.Addr.(*net.UDPAddr).Port
}
// Create a new buffer of the appropiate size. With
// TCP the buffer is 64K, with UDP the returned buffer
// has a length of 4K bytes.
func (d *Conn) NewBuffer() []byte {
if d.TCP != nil {
b := make([]byte, MaxMsgSize)
return b
}
if d.UDP != nil {
b := make([]byte, DefaultMsgSize)
return b
}
return nil
}
// ReadMsg reads a dns message m from d.
// Any errors of the underlaying Read call are returned.
func (d *Conn) ReadMsg(m *Msg) os.Error {
in := d.NewBuffer()
n, err := d.Read(in)
if err != nil {
return err
}
in = in[:n]
ok := m.Unpack(in)
if !ok {
return ErrUnpack
}
return nil
}
// WriteMsg writes dns message m to d.
// Any errors of the underlaying Write call are returned.
func (d *Conn) WriteMsg(m *Msg) os.Error {
out, ok := m.Pack()
if !ok {
return ErrPack
}
_, err := d.Write(out)
if err != nil {
return err
}
return nil
}
// Read implements the standard Read interface:
// it reads from d. If there was an error
// reading that error is returned; otherwise err is nil.
func (d *Conn) Read(p []byte) (n int, err os.Error) {
if d.UDP != nil && d.TCP != nil {
return 0, ErrConn
}
switch {
case d.UDP != nil:
var addr net.Addr
n, addr, err = d.UDP.ReadFromUDP(p)
if err != nil {
return n, err
}
d.Addr = addr
d.Port = addr.(*net.UDPAddr).Port
case d.TCP != nil:
if len(p) < 1 {
return 0, io.ErrShortBuffer
}
n, err = d.TCP.Read(p[0:2])
if err != nil || n != 2 {
return n, err
}
d.Addr = d.TCP.RemoteAddr()
d.Port = d.TCP.RemoteAddr().(*net.TCPAddr).Port
l, _ := unpackUint16(p[0:2], 0)
if l == 0 {
return 0, ErrShortRead
}
if int(l) > len(p) {
return int(l), io.ErrShortBuffer
}
n, err = d.TCP.Read(p[:l])
if err != nil {
return n, err
}
i := n
for i < int(l) {
j, err := d.TCP.Read(p[i:int(l)])
if err != nil {
return i, err
}
i += j
}
n = i
}
if d.Tsig != nil {
// Check the TSIG that we should be read
_, err = d.Tsig.Verify(p)
if err != nil {
return
}
}
return
}
// Write implements the standard Write interface:
// It write data to d. If there was an error writing
// that error is returned; otherwise err is nil
func (d *Conn) Write(p []byte) (n int, err os.Error) {
if d.UDP != nil && d.TCP != nil {
return 0, ErrConn
}
var attempts int
var q []byte
if d.Attempts == 0 {
attempts = 1
} else {
attempts = d.Attempts
}
if d.Mangle != nil {
p = d.Mangle(p)
}
d.SetTimeout()
if d.Tsig != nil {
// Create a new buffer with the TSIG added.
q, err = d.Tsig.Generate(p)
if err != nil {
return 0, err
}
} else {
q = p
}
switch {
case d.UDP != nil:
for a := 0; a < attempts; a++ {
n, err = d.UDP.WriteTo(q, d.Addr)
if err != nil {
if e, ok := err.(net.Error); ok && e.Timeout() {
continue
}
return 0, err
}
}
case d.TCP != nil:
for a := 0; a < attempts; a++ {
l := make([]byte, 2)
l[0], l[1] = packUint16(uint16(len(q)))
n, err = d.TCP.Write(l)
if err != nil {
if e, ok := err.(net.Error); ok && e.Timeout() {
continue
}
return n, err
}
if n != 2 {
return n, io.ErrShortWrite
}
n, err = d.TCP.Write(q)
if err != nil {
if e, ok := err.(net.Error); ok && e.Timeout() {
continue
}
return n, err
}
i := n
if i < len(q) {
j, err := d.TCP.Write(q[i:len(q)])
if err != nil {
if e, ok := err.(net.Error); ok && e.Timeout() {
// We are half way in our write...
continue
}
return i, err
}
i += j
}
n = i
}
}
return
}
// Close closes the connection in d. Possible errors are returned in
// err; otherwise it is nil.
func (d *Conn) Close() (err os.Error) {
if d.UDP != nil && d.TCP != nil {
return ErrConn
}
switch {
case d.UDP != nil:
err = d.UDP.Close()
case d.TCP != nil:
err = d.TCP.Close()
}
return
}
// SetTimeout sets the timeout of the socket that is contained in d.
func (d *Conn) SetTimeout() (err os.Error) {
if d.UDP != nil && d.TCP != nil {
return ErrConn
}
sec := int64(d.Timeout)
if sec == 0 {
sec = 1
}
if d.UDP != nil {
err = d.TCP.SetTimeout(sec * 1e9)
}
if d.TCP != nil {
err = d.TCP.SetTimeout(sec * 1e9)
}
return
}
// Exchange combines a Write and a Read.
// First the request is written to d and then it waits for a reply.
// If nosend is true, the write is skipped.
func (d *Conn) Exchange(request []byte, nosend bool) (reply []byte, err os.Error) {
var n int
if !nosend {
n, err = d.Write(request)
if err != nil {
return nil, err
}
}
reply = d.NewBuffer()
n, err = d.Read(reply)
if err != nil {
return nil, err
}
reply = reply[:n]
return
}
// ExchangeMsg combines a WriteMsg and a ReadMsg.
// First the request is written to d and then it waits for a reply.
// If nosend is true, the write is skipped.
func (d *Conn) ExchangeMsg(request *Msg, nosend bool) (reply *Msg, err os.Error) {
if !nosend {
err = d.WriteMsg(request)
if err != nil {
return nil, err
}
}
reply = new(Msg)
err = d.ReadMsg(reply)
if err != nil {
return nil, err
}
return reply, nil
}
type RR interface {
Header() *RR_Header
String() string
}
// An RRset is a slice of RRs.
type RRset []RR
func (r RRset) Len() int { return len(r) }
func (r RRset) Less(i, j int) bool { return r[i].Header().Name < r[j].Header().Name }
func (r RRset) Swap(i, j int) { r[i], r[j] = r[j], r[i] }
// Check if the RRset is RFC 2181 compliant
func (r RRset) Ok() bool {
ttl := r[0].Header().Ttl
name := r[0].Header().Name
class := r[0].Header().Class
for _, rr := range r[1:] {
if rr.Header().Ttl != ttl {
return false
}
if rr.Header().Name != name {
return false
}
if rr.Header().Class != class {
return false
}
}
return true
}
// DNS resource records.
// There are many types of messages,
// but they all share the same header.
type RR_Header struct {
Name string "domain-name"
Rrtype uint16
Class uint16
Ttl uint32
Rdlength uint16 // length of data after header
}
func (h *RR_Header) Header() *RR_Header {
return h
}
func (h *RR_Header) String() string {
var s string
if h.Rrtype == TypeOPT {
s = ";"
// and maybe other things
}
if len(h.Name) == 0 {
s += ".\t"
} else {
s += h.Name + "\t"
}
s = s + strconv.Itoa(int(h.Ttl)) + "\t"
if _, ok := Class_str[h.Class]; ok {
s += Class_str[h.Class] + "\t"
} else {
s += "CLASS" + strconv.Itoa(int(h.Class)) + "\t"
}
if _, ok := Rr_str[h.Rrtype]; ok {
s += Rr_str[h.Rrtype] + "\t"
} else {
s += "TYPE" + strconv.Itoa(int(h.Rrtype)) + "\t"
}
return s
}
// Return the number of labels in a domain name.
// Need to add these kind of function in a structured way. TODO(mg)
func labelCount(a string) (c uint8) {
// walk the string and count the dots
// except when it is escaped
esc := false
for _, v := range a {
switch v {
case '.':
if esc {
esc = !esc
continue
}
c++
case '\\':
esc = true
}
}
return
}