package dns // A structure for handling zone data import ( "github.com/miekg/radix" "strings" "sync" "time" ) // Zone represents a DNS zone. It's safe for concurrent use by // multilpe goroutines. type Zone struct { Origin string // Origin of the zone Wildcard int // Whenever we see a wildcard name, this is incremented *radix.Radix // Zone data mutex *sync.RWMutex // timemodified? expired bool // Slave zone is expired } // SignatureConfig holds the parameters for zone (re)signing. This // is copied from OpenDNSSEC. See: // https://wiki.opendnssec.org/display/DOCS/kasp.xml type SignatureConfig struct { // Validity period of the signatures, typically 2 to 4 weeks. Validity time.Duration // When the end of the validity approaches, how much time should remain // before we start to resign. Typical value is 3 days. Refresh time.Duration // Jitter is an amount of time added or subtracted from the // expiration time to ensure not all signatures expire a the same time. // Typical value is 12 hours. Jitter time.Duration // InceptionOffset is subtracted from the inception time to ensure badly // calibrated clocks on the internet can still validate a signature. // Typical value is 300 seconds. InceptionOffset time.Duration } func newSignatureConfig() *SignatureConfig { return &SignatureConfig{time.Duration(4*7*24) * time.Hour, time.Duration(3*24) * time.Hour, time.Duration(12) * time.Hour, time.Duration(300) * time.Second} } // DefaultSignaturePolicy has the following values. Validity is 4 weeks, // Refresh is set to 3 days, Jitter to 12 hours and InceptionOffset to 300 seconds. var DefaultSignatureConfig = newSignatureConfig() // NewZone creates an initialized zone with Origin set to origin. func NewZone(origin string) *Zone { if origin == "" { origin = "." } if _, _, ok := IsDomainName(origin); !ok { return nil } z := new(Zone) z.mutex = new(sync.RWMutex) z.Origin = Fqdn(origin) z.Radix = radix.New() return z } // ZoneData holds all the RRs having their owner name equal to Name. type ZoneData struct { Name string // Domain name for this node RR map[uint16][]RR // Map of the RR type to the RR Signatures map[uint16][]*RR_RRSIG // DNSSEC signatures for the RRs, stored under type covered NonAuth bool // Always false, except for NSsets that differ from z.Origin mutex *sync.RWMutex // For locking radix *radix.Radix // The actual radix node belonging to this value } // newZoneData creates a new zone data element func newZoneData(s string) *ZoneData { zd := new(ZoneData) zd.Name = s zd.RR = make(map[uint16][]RR) zd.Signatures = make(map[uint16][]*RR_RRSIG) zd.mutex = new(sync.RWMutex) return zd } // toRadixName reverses a domain name so that when we store it in the radix tree // we preserve the nsec ordering of the zone (this idea was stolen from NSD). // each label is also lowercased. func toRadixName(d string) string { if d == "." { return "." } s := "" for _, l := range SplitLabels(d) { if s == "" { s = strings.ToLower(l) + s continue } s = strings.ToLower(l) + "." + s } return s } func (z *Zone) String() string { return z.Radix.String() } // Insert inserts an RR into the zone. There is no check for duplicate data, although // Remove will remove all duplicates. func (z *Zone) Insert(r RR) error { if !IsSubDomain(z.Origin, r.Header().Name) { return &Error{Err: "out of zone data", Name: r.Header().Name} } // TODO(mg): quick check for doubles? key := toRadixName(r.Header().Name) z.mutex.Lock() zd, exact := z.Radix.Find(key) if !exact { // Not an exact match, so insert new value defer z.mutex.Unlock() // Check if it's a wildcard name if len(r.Header().Name) > 1 && r.Header().Name[0] == '*' && r.Header().Name[1] == '.' { z.Wildcard++ } zd := newZoneData(r.Header().Name) switch t := r.Header().Rrtype; t { case TypeRRSIG: sigtype := r.(*RR_RRSIG).TypeCovered zd.Signatures[sigtype] = append(zd.Signatures[sigtype], r.(*RR_RRSIG)) case TypeNS: // NS records with other names than z.Origin are non-auth if r.Header().Name != z.Origin { zd.NonAuth = true } fallthrough default: zd.RR[t] = append(zd.RR[t], r) } z.Radix.Insert(key, zd) return nil } z.mutex.Unlock() zd.Value.(*ZoneData).mutex.Lock() defer zd.Value.(*ZoneData).mutex.Unlock() // Name already there switch t := r.Header().Rrtype; t { case TypeRRSIG: sigtype := r.(*RR_RRSIG).TypeCovered zd.Value.(*ZoneData).Signatures[sigtype] = append(zd.Value.(*ZoneData).Signatures[sigtype], r.(*RR_RRSIG)) case TypeNS: if r.Header().Name != z.Origin { zd.Value.(*ZoneData).NonAuth = true } fallthrough default: zd.Value.(*ZoneData).RR[t] = append(zd.Value.(*ZoneData).RR[t], r) } return nil } // Remove removes the RR r from the zone. If the RR can not be found, // this is a no-op. func (z *Zone) Remove(r RR) error { key := toRadixName(r.Header().Name) z.mutex.Lock() zd, exact := z.Radix.Find(key) if !exact { defer z.mutex.Unlock() return nil } z.mutex.Unlock() zd.Value.(*ZoneData).mutex.Lock() defer zd.Value.(*ZoneData).mutex.Unlock() remove := false switch t := r.Header().Rrtype; t { case TypeRRSIG: sigtype := r.(*RR_RRSIG).TypeCovered for i, zr := range zd.Value.(*ZoneData).RR[sigtype] { if r == zr { zd.Value.(*ZoneData).RR[sigtype] = append(zd.Value.(*ZoneData).RR[sigtype][:i], zd.Value.(*ZoneData).RR[sigtype][i+1:]...) remove = true } } default: for i, zr := range zd.Value.(*ZoneData).RR[t] { if r == zr { zd.Value.(*ZoneData).RR[t] = append(zd.Value.(*ZoneData).RR[t][:i], zd.Value.(*ZoneData).RR[t][i+1:]...) remove = true } } } if remove && len(r.Header().Name) > 1 && r.Header().Name[0] == '*' && r.Header().Name[1] == '.' { z.Wildcard-- if z.Wildcard < 0 { z.Wildcard = 0 } } // TODO(mg): what to do if the whole structure is empty? Set it to nil? return nil } // Find looks up the ownername s in the zone and returns the // data and true when an exact match is found. If an exact find isn't // possible the first parent node with a non-nil Value is returned and // the boolean is false. func (z *Zone) Find(s string) (node *ZoneData, exact bool) { z.mutex.RLock() defer z.mutex.RUnlock() n, e := z.Radix.Find(toRadixName(s)) if n == nil { return nil, false } node = n.Value.(*ZoneData) exact = e return } // FindAndNext looks up the ownername s and its successor. It works // just like Find. func (z *Zone) FindAndNext(s string) (node, next *ZoneData, exact bool) { z.mutex.RLock() defer z.mutex.RUnlock() n, e := z.Radix.Find(toRadixName(s)) if n == nil { return nil, nil, false } node = n.Value.(*ZoneData) next = n.Next().Value.(*ZoneData) // There is always a next exact = e return } // FindFunc works like Find, but the function f is executed on // each node which has a non-nil Value during the tree traversal. // If f returns true, that node is returned. func (z *Zone) FindFunc(s string, f func(interface{}) bool) (*ZoneData, bool, bool) { z.mutex.RLock() defer z.mutex.RUnlock() zd, e, b := z.Radix.FindFunc(toRadixName(s), f) if zd == nil { return nil, false, false } return zd.Value.(*ZoneData), e, b } // Sign (re)signes the zone z with the given keys, it knows about ZSKs and KSKs. // NSEC is used for authenticated denial of existence. // If config is nil DefaultSignatureConfig is used. func (z *Zone) Sign(privkeys []PrivateKey, config *SignatureConfig) error { if config == nil { config = DefaultSignatureConfig } // TODO(mg): concurrently walk the zone and sign the rrsets // TODO(mg): nsec, or next pointer. Need to be a single tree-op return nil } // Sign each ZoneData in place. // TODO(mg): assume not signed func signZoneData(zd *ZoneData, privkeys []PrivateKey, signername string, config *SignatureConfig) { if zd.NonAuth == true { return } //s := new(RR_RRSIG) // signername }