// Copyright 2011 Miek Gieben. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // DNS server implementation. package dns import ( "io" "net" ) // how to do Tsig here?? TODO(mg) type Handler interface { ServeDNS(w ResponseWriter, r *Msg) // IP based ACL mapping. The contains the string representation // of the IP address and a boolean saying it may connect (true) or not. } // A ResponseWriter interface is used by an DNS handler to // construct an DNS response. type ResponseWriter interface { // RemoteAddr returns the net.Addr of the client that sent the current request. RemoteAddr() net.Addr // Write a reply back to the client. Write([]byte) (int, error) } // port? type conn struct { remoteAddr net.Addr // address of remote side (sans port) handler Handler // request handler request []byte // bytes read _UDP *net.UDPConn // i/o connection if UDP was used _TCP *net.TCPConn // i/o connection if TCP was used hijacked bool // connection has been hijacked by hander TODO(mg) } type response struct { conn *conn req *Msg } // ServeMux is an DNS request multiplexer. It matches the // zone name of each incoming request against a list of // registered patterns add calls the handler for the pattern // that most closely matches the zone name. type ServeMux struct { m map[string]Handler } // NewServeMux allocates and returns a new ServeMux. func NewServeMux() *ServeMux { return &ServeMux{make(map[string]Handler)} } // DefaultServeMux is the default ServeMux used by Serve. var DefaultServeMux = NewServeMux() // The HandlerFunc type is an adapter to allow the use of // ordinary functions as DNS handlers. If f is a function // with the appropriate signature, HandlerFunc(f) is a // Handler object that calls f. type HandlerFunc func(ResponseWriter, *Msg) // ServerDNS calls f(w, r) func (f HandlerFunc) ServeDNS(w ResponseWriter, r *Msg) { f(w, r) } // Helper handler that returns an answer with // RCODE = refused for every request. func Refused(w ResponseWriter, r *Msg) { m := new(Msg) m.SetRcode(r, RcodeRefused) buf, _ := m.Pack() w.Write(buf) } // RefusedHandler returns HandlerFunc with Refused. func RefusedHandler() Handler { return HandlerFunc(Refused) } // ... func ListenAndServe(addr string, network string, handler Handler, size int) error { server := &Server{Addr: addr, Net: network, Handler: handler, UDPSize: size} return server.ListenAndServe() } func (mux *ServeMux) match(zone string) Handler { var h Handler var n = 0 for k, v := range mux.m { if !zoneMatch(k, zone) { continue } if h == nil || len(k) > n { n = len(k) h = v } } return h } func (mux *ServeMux) Handle(pattern string, handler Handler) { if pattern == "" { panic("dns: invalid pattern " + pattern) } // Should this go //if pattern[len(pattern)-1] != '.' { // no ending . // mux.m[pattern+"."] = handler //} else { mux.m[pattern] = handler } func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Msg)) { mux.Handle(pattern, HandlerFunc(handler)) } // ServeDNS dispatches the request to the handler whose // pattern most closely matches the request message. func (mux *ServeMux) ServeDNS(w ResponseWriter, request *Msg) { h := mux.match(request.Question[0].Name) if h == nil { h = RefusedHandler() } h.ServeDNS(w, request) } // Handle register the handler the given pattern // in the DefaultServeMux. The documentation for // ServeMux explains how patters are matched. func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) } func HandleFunc(pattern string, handler func(ResponseWriter, *Msg)) { DefaultServeMux.HandleFunc(pattern, handler) } // A Server defines parameters for running an DNS server. // Note how much it starts to look like 'Client struct' type Server struct { Addr string // address to listen on, ":dns" if empty Net string // if "tcp" it will invoke a TCP listener, otherwise an UDP one Handler Handler // handler to invoke, dns.DefaultServeMux if nil UDPSize int // default buffer to use to read incoming UDP messages ReadTimeout int64 // the net.Conn.SetReadTimeout value for new connections WriteTimeout int64 // the net.Conn.SetWriteTimeout value for new connections TsigSecret map[string]string // secret(s) for Tsig map[] } // ListenAndServe starts a nameserver on the configured address. func (srv *Server) ListenAndServe() error { addr := srv.Addr if addr == "" { addr = ":domain" } switch srv.Net { case "tcp", "tcp4", "tcp6": a, e := net.ResolveTCPAddr(srv.Net, addr) if e != nil { return e } l, e := net.ListenTCP(srv.Net, a) if e != nil { return e } return srv.ServeTCP(l) case "udp", "udp4", "udp6": a, e := net.ResolveUDPAddr(srv.Net, addr) if e != nil { return e } l, e := net.ListenUDP(srv.Net, a) if e != nil { return e } return srv.ServeUDP(l) } return nil // os.Error with wrong network } func (srv *Server) ServeTCP(l *net.TCPListener) error { defer l.Close() handler := srv.Handler if handler == nil { handler = DefaultServeMux } forever: for { rw, e := l.AcceptTCP() if e != nil { return e } if srv.ReadTimeout != 0 { rw.SetReadTimeout(srv.ReadTimeout) } if srv.WriteTimeout != 0 { rw.SetWriteTimeout(srv.WriteTimeout) } l := make([]byte, 2) n, err := rw.Read(l) if err != nil || n != 2 { continue } length, _ := unpackUint16(l, 0) if length == 0 { continue } m := make([]byte, int(length)) n, err = rw.Read(m[:int(length)]) if err != nil { continue } i := n for i < int(length) { j, err := rw.Read(m[i:int(length)]) if err != nil { continue forever } i += j } n = i d, err := newConn(rw, nil, rw.RemoteAddr(), m, handler) if err != nil { continue } go d.serve() } panic("not reached") } func (srv *Server) ServeUDP(l *net.UDPConn) error { defer l.Close() handler := srv.Handler if handler == nil { handler = DefaultServeMux } if srv.UDPSize == 0 { srv.UDPSize = UDPReceiveMsgSize } for { m := make([]byte, srv.UDPSize) n, a, e := l.ReadFromUDP(m) if e != nil { return e } m = m[:n] if srv.ReadTimeout != 0 { l.SetReadTimeout(srv.ReadTimeout) } if srv.WriteTimeout != 0 { l.SetWriteTimeout(srv.WriteTimeout) } d, err := newConn(nil, l, a, m, handler) if err != nil { continue } go d.serve() } panic("not reached") } func newConn(t *net.TCPConn, u *net.UDPConn, a net.Addr, buf []byte, handler Handler) (*conn, error) { c := new(conn) c.handler = handler c._TCP = t c._UDP = u c.remoteAddr = a c.request = buf return c, nil } // Close the connection. func (c *conn) close() { switch { case c._UDP != nil: c._UDP.Close() c._UDP = nil case c._TCP != nil: c._TCP.Close() c._TCP = nil } } // Serve a new connection. func (c *conn) serve() { for { // Request has been read in ServeUDP or ServeTCP w := new(response) w.conn = c req := new(Msg) if !req.Unpack(c.request) { // Send a format error back x := new(Msg) x.SetRcodeFormatError(req) buf, _ := x.Pack() w.Write(buf) break } w.req = req c.handler.ServeDNS(w, w.req) // this does the writing back to the client if c.hijacked { return } break // TODO(mg) Why is this a loop anyway } if c._TCP != nil { c.close() // Listen and Serve is closed then } } func (w *response) Write(data []byte) (n int, err error) { switch { case w.conn._UDP != nil: n, err = w.conn._UDP.WriteTo(data, w.conn.remoteAddr) if err != nil { return 0, err } case w.conn._TCP != nil: // TODO(mg) len(data) > 64K l := make([]byte, 2) l[0], l[1] = packUint16(uint16(len(data))) n, err = w.conn._TCP.Write(l) if err != nil { return n, err } if n != 2 { return n, io.ErrShortWrite } n, err = w.conn._TCP.Write(data) if err != nil { return n, err } i := n if i < len(data) { j, err := w.conn._TCP.Write(data[i:len(data)]) if err != nil { return i, err } i += j } n = i } return n, nil } // RemoteAddr implements the ResponseWriter.RemoteAddr method func (w *response) RemoteAddr() net.Addr { return w.conn.remoteAddr }