// Copyright 2011 Miek Gieben. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package dns import ( "net" "strconv" ) const hexDigit = "0123456789abcdef" // Everything is assumed in the ClassINET class. If // you need other classes you are on your own. // SetReply creates a reply packet from a request message. func (dns *Msg) SetReply(request *Msg) *Msg { dns.Id = request.Id dns.RecursionDesired = request.RecursionDesired // Copy rd bit dns.Response = true dns.Opcode = OpcodeQuery dns.Rcode = RcodeSuccess if len(request.Question) > 0 { dns.Question = make([]Question, 1) dns.Question[0] = request.Question[0] } return dns } // SetQuestion creates a question packet. func (dns *Msg) SetQuestion(z string, t uint16) *Msg { dns.Id = Id() dns.RecursionDesired = true dns.Question = make([]Question, 1) dns.Question[0] = Question{z, t, ClassINET} return dns } // SetNotify creates a notify packet. func (dns *Msg) SetNotify(z string) *Msg { dns.Opcode = OpcodeNotify dns.Authoritative = true dns.Id = Id() dns.Question = make([]Question, 1) dns.Question[0] = Question{z, TypeSOA, ClassINET} return dns } // SetRcode creates an error packet suitable for the request. func (dns *Msg) SetRcode(request *Msg, rcode int) *Msg { dns.Rcode = rcode dns.Opcode = OpcodeQuery dns.Response = true dns.Id = request.Id // Note that this is actually a FORMERR if len(request.Question) > 0 { dns.Question = make([]Question, 1) dns.Question[0] = request.Question[0] } return dns } // SetRcodeFormatError creates a packet with FormError set. func (dns *Msg) SetRcodeFormatError(request *Msg) *Msg { dns.Rcode = RcodeFormatError dns.Opcode = OpcodeQuery dns.Response = true dns.Authoritative = false dns.Id = request.Id return dns } // SetUpdate makes the message a dynamic update packet. It // sets the ZONE section to: z, TypeSOA, ClassINET. func (dns *Msg) SetUpdate(z string) *Msg { dns.Id = Id() dns.Response = false dns.Opcode = OpcodeUpdate dns.Compress = false // BIND9 cannot handle compression dns.Question = make([]Question, 1) dns.Question[0] = Question{z, TypeSOA, ClassINET} return dns } // SetIxfr creates dns.Msg for requesting an IXFR. func (dns *Msg) SetIxfr(z string, serial uint32) *Msg { dns.Id = Id() dns.Question = make([]Question, 1) dns.Ns = make([]RR, 1) s := new(SOA) s.Hdr = RR_Header{z, TypeSOA, ClassINET, defaultTtl, 0} s.Serial = serial dns.Question[0] = Question{z, TypeIXFR, ClassINET} dns.Ns[0] = s return dns } // SetAxfr creates dns.Msg for requesting an AXFR. func (dns *Msg) SetAxfr(z string) *Msg { dns.Id = Id() dns.Question = make([]Question, 1) dns.Question[0] = Question{z, TypeAXFR, ClassINET} return dns } // SetTsig appends a TSIG RR to the message. // This is only a skeleton TSIG RR that is added as the last RR in the // additional section. The Tsig is calculated when the message is being send. func (dns *Msg) SetTsig(z, algo string, fudge, timesigned int64) *Msg { t := new(TSIG) t.Hdr = RR_Header{z, TypeTSIG, ClassANY, 0, 0} t.Algorithm = algo t.Fudge = 300 t.TimeSigned = uint64(timesigned) t.OrigId = dns.Id dns.Extra = append(dns.Extra, t) return dns } // SetEdns0 appends a EDNS0 OPT RR to the message. // TSIG should always the last RR in a message. func (dns *Msg) SetEdns0(udpsize uint16, do bool) *Msg { e := new(OPT) e.Hdr.Name = "." e.Hdr.Rrtype = TypeOPT e.SetUDPSize(udpsize) if do { e.SetDo() } dns.Extra = append(dns.Extra, e) return dns } // IsTsig checks if the message has a TSIG record as the last record // in the additional section. It returns the TSIG record found or nil. func (dns *Msg) IsTsig() *TSIG { if len(dns.Extra) > 0 { if dns.Extra[len(dns.Extra)-1].Header().Rrtype == TypeTSIG { return dns.Extra[len(dns.Extra)-1].(*TSIG) } } return nil } // IsEdns0 checks if the message has a EDNS0 (OPT) record, any EDNS0 // record in the additional section will do. It returns the OPT record // found or nil. func (dns *Msg) IsEdns0() *OPT { for _, r := range dns.Extra { if r.Header().Rrtype == TypeOPT { return r.(*OPT) } } return nil } // IsDomainName checks if s is a valid domainname, it returns // the number of labels and true, when a domain name is valid. // Note that non fully qualified domain name is considered valid, in this case the // last label is counted in the number of labels. // When false is returned the number of labels is not defined. func IsDomainName(s string) (int, bool) { // use PackDomainName if buf == nil { buf = make([]byte, 256) } lenmsg, err := PackDomainName(s, buf, 0, nil, false) if err != nil { return 0, false } // There are no compression pointers, because the map was nil, so // walk the binary name and count the length bits - this is the number // of labels. off := 0 labels := 0 Loop: for { if off >= lenmsg { return labels, false } c := int(buf[off]) switch c & 0xC0 { case 0x00: if c == 0x00 { // end of name break } if off+c > lenmsg { return labels, false } labels++ off += c } } return labels, true } // IsSubDomain checks if child is indeed a child of the parent. Both child and // parent are *not* downcased before doing the comparison. func IsSubDomain(parent, child string) bool { // Entire child is contained in parent return CompareDomainName(parent, child) == CountLabel(parent) } // IsFqdn checks if a domain name is fully qualified. func IsFqdn(s string) bool { l := len(s) if l == 0 { return false } return s[l-1] == '.' } // Fqdns return the fully qualified domain name from s. // If s is already fully qualified, it behaves as the identity function. func Fqdn(s string) string { if IsFqdn(s) { return s } return s + "." } // Copied from the official Go code. // ReverseAddr returns the in-addr.arpa. or ip6.arpa. hostname of the IP // address addr suitable for rDNS (PTR) record lookup or an error if it fails // to parse the IP address. func ReverseAddr(addr string) (arpa string, err error) { ip := net.ParseIP(addr) if ip == nil { return "", &Error{err: "unrecognized address: " + addr} } if ip.To4() != nil { return strconv.Itoa(int(ip[15])) + "." + strconv.Itoa(int(ip[14])) + "." + strconv.Itoa(int(ip[13])) + "." + strconv.Itoa(int(ip[12])) + ".in-addr.arpa.", nil } // Must be IPv6 buf := make([]byte, 0, len(ip)*4+len("ip6.arpa.")) // Add it, in reverse, to the buffer for i := len(ip) - 1; i >= 0; i-- { v := ip[i] buf = append(buf, hexDigit[v&0xF]) buf = append(buf, '.') buf = append(buf, hexDigit[v>>4]) buf = append(buf, '.') } // Append "ip6.arpa." and return (buf already has the final .) buf = append(buf, "ip6.arpa."...) return string(buf), nil } // String returns the string representation for the type t func (t Type) String() string { if t1, ok := TypeToString[uint16(t)]; ok { return t1 } else { return "TYPE" + strconv.Itoa(int(t)) } panic("dns: not reached") // go < 1.1 compat } // String returns the string representation for the class c func (c Class) String() string { if c1, ok := ClassToString[uint16(c)]; ok { return c1 } else { return "CLASS" + strconv.Itoa(int(c)) } panic("dns: not reached") }