package dns import ( "net" "strconv" ) const hexDigit = "0123456789abcdef" // Everything is assumed in the ClassINET class. If // you need other classes you are on your own. // SetReply creates a reply packet from a request message. func (dns *Msg) SetReply(request *Msg) *Msg { dns.MsgHdr.Id = request.MsgHdr.Id dns.MsgHdr.RecursionDesired = request.MsgHdr.RecursionDesired // Copy rd bit dns.MsgHdr.Response = true dns.MsgHdr.Opcode = OpcodeQuery dns.MsgHdr.Rcode = RcodeSuccess dns.Question = make([]Question, 1) dns.Question[0] = request.Question[0] return dns } // SetQuestion creates a question packet. func (dns *Msg) SetQuestion(z string, t uint16) *Msg { dns.MsgHdr.Id = Id() dns.MsgHdr.RecursionDesired = true dns.Question = make([]Question, 1) dns.Question[0] = Question{z, t, ClassINET} return dns } // SetNotify creates a notify packet. func (dns *Msg) SetNotify(z string) *Msg { dns.MsgHdr.Opcode = OpcodeNotify dns.MsgHdr.Authoritative = true dns.MsgHdr.Id = Id() dns.Question = make([]Question, 1) dns.Question[0] = Question{z, TypeSOA, ClassINET} return dns } // SetRcode creates an error packet suitable for the request. func (dns *Msg) SetRcode(request *Msg, rcode int) *Msg { dns.MsgHdr.Rcode = rcode dns.MsgHdr.Opcode = OpcodeQuery dns.MsgHdr.Response = true dns.MsgHdr.Id = request.MsgHdr.Id dns.Question = make([]Question, 1) dns.Question[0] = request.Question[0] return dns } // SetRcodeFormatError creates a packet with FormError set. func (dns *Msg) SetRcodeFormatError(request *Msg) *Msg { dns.MsgHdr.Rcode = RcodeFormatError dns.MsgHdr.Opcode = OpcodeQuery dns.MsgHdr.Response = true dns.MsgHdr.Authoritative = false dns.MsgHdr.Id = request.MsgHdr.Id return dns } // SetUpdate makes the message a dynamic update packet. It // sets the ZONE section to: z, TypeSOA, ClassINET. func (dns *Msg) SetUpdate(z string) *Msg { dns.MsgHdr.Id = Id() dns.MsgHdr.Response = false dns.MsgHdr.Opcode = OpcodeUpdate dns.Compress = false // BIND9 cannot handle compression dns.Question = make([]Question, 1) dns.Question[0] = Question{z, TypeSOA, ClassINET} return dns } // SetIxfr creates dns msg suitable for requesting an ixfr. func (dns *Msg) SetIxfr(z string, serial uint32) *Msg { dns.MsgHdr.Id = Id() dns.Question = make([]Question, 1) dns.Ns = make([]RR, 1) s := new(RR_SOA) s.Hdr = RR_Header{z, TypeSOA, ClassINET, defaultTtl, 0} s.Serial = serial dns.Question[0] = Question{z, TypeIXFR, ClassINET} dns.Ns[0] = s return dns } // SetAxfr creates dns msg suitable for requesting an axfr. func (dns *Msg) SetAxfr(z string) *Msg { dns.MsgHdr.Id = Id() dns.Question = make([]Question, 1) dns.Question[0] = Question{z, TypeAXFR, ClassINET} return dns } // SetTsig appends a TSIG RR to the message. // This is only a skeleton TSIG RR that is added as the last RR in the // additional section. The Tsig is calculated when the message is being send. func (dns *Msg) SetTsig(z, algo string, fudge, timesigned int64) *Msg { t := new(RR_TSIG) t.Hdr = RR_Header{z, TypeTSIG, ClassANY, 0, 0} t.Algorithm = algo t.Fudge = 300 t.TimeSigned = uint64(timesigned) t.OrigId = dns.MsgHdr.Id dns.Extra = append(dns.Extra, t) return dns } // SetEdns0 appends a EDNS0 OPT RR to the message. // TSIG should always the last RR in a message. func (dns *Msg) SetEdns0(udpsize uint16, do bool) *Msg { e := new(RR_OPT) e.Hdr.Name = "." e.Hdr.Rrtype = TypeOPT e.SetUDPSize(udpsize) if do { e.SetDo() } dns.Extra = append(dns.Extra, e) return dns } // IsTsig checks if the message has a TSIG record as the last record // in the additional section. It returns the TSIG record found or nil. func (dns *Msg) IsTsig() *RR_TSIG { if len(dns.Extra) > 0 { if dns.Extra[len(dns.Extra)-1].Header().Rrtype == TypeTSIG { return dns.Extra[len(dns.Extra)-1].(*RR_TSIG) } } return nil } // IsEdns0 checks if the message has a EDNS0 (OPT) record, any EDNS0 // record in the additional section will do. It returns the OPT record // found or nil. func (dns *Msg) IsEdns0() *RR_OPT { for _, r := range dns.Extra { if r.Header().Rrtype == TypeOPT { return r.(*RR_OPT) } } return nil } // IsDomainName checks if s is a valid domainname, it returns // the number of labels, total length and true, when a domain name is valid. // When false is returned the labelcount and length are not defined. func IsDomainName(s string) (uint8, uint8, bool) { // copied from net package. // See RFC 1035, RFC 3696. l := len(s) if l == 0 || l > 255 { return 0, 0, false } longer := 0 // Simplify checking loop: make the name end in a dot. // Don't call Fqdn() to save another len(s). // Keep in mind that if we do this, otherwise we report a length+1 if s[l-1] != '.' { s += "." l++ longer = 1 } // Preloop check for root label if s == "." { return 0, 1, true } last := byte('.') ok := false // ok once we've seen a letter or digit partlen := 0 labels := uint8(0) for i := 0; i < l; i++ { c := s[i] switch { default: return 0, uint8(l - longer), false case 'a' <= c && c <= 'z' || 'A' <= c && c <= 'Z' || c == '_' || c == '*' || c == '/': ok = true partlen++ case c == '\\': // Ok case '0' <= c && c <= '9': ok = true partlen++ case c == '-': // byte before dash cannot be dot if last == '.' { return 0, uint8(l - longer), false } partlen++ case c == '.': // byte before dot cannot be dot if last == '.' { return 0, uint8(l - longer), false } if last == '\\' { // Ok, escaped dot. partlen++ break } if partlen > 63 || partlen == 0 { return 0, uint8(l - longer), false } partlen = 0 labels++ } last = c } return labels, uint8(l - longer), ok } // IsSubDomain checks if child is indeed a child of the parent. func IsSubDomain(parent, child string) bool { // Entire child is contained in parent return CompareLabels(parent, child) == LenLabels(parent) } // IsFqdn checks if a domain name is fully qualified. func IsFqdn(s string) bool { l := len(s) if l == 0 { return false // ? } return s[l-1] == '.' } // Fqdns return the fully qualified domain name from s. // If s is already fully qualified, it behaves as the identity function. func Fqdn(s string) string { if IsFqdn(s) { return s } return s + "." } // Copied from the official Go code // ReverseAddr returns the in-addr.arpa. or ip6.arpa. hostname of the IP // address addr suitable for rDNS (PTR) record lookup or an error if it fails // to parse the IP address. func ReverseAddr(addr string) (arpa string, err error) { ip := net.ParseIP(addr) if ip == nil { return "", &Error{Err: "unrecognized address", Name: addr} } if ip.To4() != nil { return strconv.Itoa(int(ip[15])) + "." + strconv.Itoa(int(ip[14])) + "." + strconv.Itoa(int(ip[13])) + "." + strconv.Itoa(int(ip[12])) + ".in-addr.arpa.", nil } // Must be IPv6 buf := make([]byte, 0, len(ip)*4+len("ip6.arpa.")) // Add it, in reverse, to the buffer for i := len(ip) - 1; i >= 0; i-- { v := ip[i] buf = append(buf, hexDigit[v&0xF]) buf = append(buf, '.') buf = append(buf, hexDigit[v>>4]) buf = append(buf, '.') } // Append "ip6.arpa." and return (buf already has the final .) buf = append(buf, "ip6.arpa."...) return string(buf), nil }