package dns import ( "time" ) // Envelope is used when doing a zone transfer with a remote server. type Envelope struct { RR []RR // The set of RRs in the answer section of the xfr reply message. Error error // If something went wrong, this contains the error. } // A Transfer defines parameters that are used during a zone transfer. type Transfer struct { *Conn DialTimeout time.Duration // net.DialTimeout (ns), defaults to 2 * 1e9 ReadTimeout time.Duration // net.Conn.SetReadTimeout value for connections (ns), defaults to 2 * 1e9 WriteTimeout time.Duration // net.Conn.SetWriteTimeout value for connections (ns), defaults to 2 * 1e9 TsigSecret map[string]string // Secret(s) for Tsig map[], zonename must be fully qualified tsigTimersOnly bool } // Think we need to away to stop the transfer // In performs an incoming transfer with the server in a. func (t *Transfer) In(q *Msg, a string) (env chan *Envelope, err error) { timeout := dnsTimeout if t.DialTimeout != 0 { timeout = t.DialTimeout } t.Conn, err = DialTimeout("tcp", a, timeout) if err != nil { return nil, err } if err := t.WriteMsg(q); err != nil { return nil, err } env = make(chan *Envelope) go func() { if q.Question[0].Qtype == TypeAXFR { go t.inAxfr(q.Id, env) return } if q.Question[0].Qtype == TypeIXFR { go t.inIxfr(q.Id, env) return } }() return env, nil } func (t *Transfer) inAxfr(id uint16, c chan *Envelope) { first := true defer t.Close() defer close(c) timeout := dnsTimeout if t.ReadTimeout != 0 { timeout = t.ReadTimeout } for { t.Conn.SetReadDeadline(time.Now().Add(timeout)) in, err := t.ReadMsg() if err != nil { c <- &Envelope{nil, err} return } if id != in.Id { c <- &Envelope{in.Answer, ErrId} return } if first { if !isSOAFirst(in) { c <- &Envelope{in.Answer, ErrSoa} return } first = !first // only one answer that is SOA, receive more if len(in.Answer) == 1 { t.tsigTimersOnly = true c <- &Envelope{in.Answer, nil} continue } } if !first { t.tsigTimersOnly = true // Subsequent envelopes use this. if isSOALast(in) { c <- &Envelope{in.Answer, nil} return } c <- &Envelope{in.Answer, nil} } } panic("dns: not reached") } func (t *Transfer) inIxfr(id uint16, c chan *Envelope) { serial := uint32(0) // The first serial seen is the current server serial first := true defer t.Close() defer close(c) timeout := dnsTimeout if t.ReadTimeout != 0 { timeout = t.ReadTimeout } for { t.SetReadDeadline(time.Now().Add(timeout)) in, err := t.ReadMsg() if err != nil { c <- &Envelope{in.Answer, err} return } if id != in.Id { c <- &Envelope{in.Answer, ErrId} return } if first { // A single SOA RR signals "no changes" if len(in.Answer) == 1 && isSOAFirst(in) { c <- &Envelope{in.Answer, nil} return } // Check if the returned answer is ok if !isSOAFirst(in) { c <- &Envelope{in.Answer, ErrSoa} return } // This serial is important serial = in.Answer[0].(*SOA).Serial first = !first } // Now we need to check each message for SOA records, to see what we need to do if !first { t.tsigTimersOnly = true // If the last record in the IXFR contains the servers' SOA, we should quit if v, ok := in.Answer[len(in.Answer)-1].(*SOA); ok { if v.Serial == serial { c <- &Envelope{in.Answer, nil} return } } c <- &Envelope{in.Answer, nil} } } } // Out performs an outgoing transfer with the client connecting in w. // Basic use pattern: // // ch := make(chan *dns.Envelope) // tr := new(dns.Transfer) // tr.Out(w, r, ch) // c <- &dns.Envelope{RR: []dns.RR{soa, rr1, rr2, rr3, soa}} // close(ch) // w.Hijack() // // w.Close() // Client closes connection // // The server is responsible for sending the correct sequence of RRs through the // channel ch. func (t *Transfer) Out(w ResponseWriter, q *Msg, ch chan *Envelope) error { r := new(Msg) // Compress? r.SetReply(q) r.Authoritative = true go func() { for x := range ch { // assume it fits TODO(miek): fix r.Answer = append(r.Answer, x.RR...) if err := w.WriteMsg(r); err != nil { return } } w.TsigTimersOnly(true) r.Answer = nil }() return nil } // ReadMsg reads a message from the transfer connection t. func (t *Transfer) ReadMsg() (*Msg, error) { m := new(Msg) p := make([]byte, MaxMsgSize) n, err := t.Read(p) if err != nil && n == 0 { return nil, err } p = p[:n] if err := m.Unpack(p); err != nil { return nil, err } if ts := m.IsTsig(); ts != nil && t.TsigSecret != nil { if _, ok := t.TsigSecret[ts.Hdr.Name]; !ok { return m, ErrSecret } // Need to work on the original message p, as that was used to calculate the tsig. err = TsigVerify(p, t.TsigSecret[ts.Hdr.Name], t.tsigRequestMAC, t.tsigTimersOnly) } return m, err } // WriteMsg writes a message through the transfer connection t. func (t *Transfer) WriteMsg(m *Msg) (err error) { var out []byte if ts := m.IsTsig(); ts != nil && t.TsigSecret != nil { if _, ok := t.TsigSecret[ts.Hdr.Name]; !ok { return ErrSecret } out, t.tsigRequestMAC, err = TsigGenerate(m, t.TsigSecret[ts.Hdr.Name], t.tsigRequestMAC, t.tsigTimersOnly) } else { out, err = m.Pack() } if err != nil { return err } if _, err = t.Write(out); err != nil { return err } return nil } func isSOAFirst(in *Msg) bool { if len(in.Answer) > 0 { return in.Answer[0].Header().Rrtype == TypeSOA } return false } func isSOALast(in *Msg) bool { if len(in.Answer) > 0 { return in.Answer[len(in.Answer)-1].Header().Rrtype == TypeSOA } return false }