// DNS server implementation. package dns import ( "bytes" "io" "net" "sync" "time" ) type Handler interface { ServeDNS(w ResponseWriter, r *Msg) } // A ResponseWriter interface is used by an DNS handler to // construct an DNS response. type ResponseWriter interface { // LocalAddr returns the net.Addr of the server LocalAddr() net.Addr // RemoteAddr returns the net.Addr of the client that sent the current request. RemoteAddr() net.Addr // WriteMsg writes a reply back to the client. WriteMsg(*Msg) error // Write writes a raw buffer back to the client. Write([]byte) (int, error) // Close closes the connection. Close() error // TsigStatus returns the status of the Tsig. TsigStatus() error // TsigTimersOnly sets the tsig timers only boolean. TsigTimersOnly(bool) // Hijack lets the caller take over the connection. // After a call to Hijack(), the DNS package will not do anything with the connection. Hijack() } type response struct { hijacked bool // connection has been hijacked by handler tsigStatus error tsigTimersOnly bool tsigRequestMAC string tsigSecret map[string]string // the tsig secrets udp *net.UDPConn // i/o connection if UDP was used tcp *net.TCPConn // i/o connection if TCP was used udpSession *sessionUDP // oob data to get egress interface right remoteAddr net.Addr // address of the client } // ServeMux is an DNS request multiplexer. It matches the // zone name of each incoming request against a list of // registered patterns add calls the handler for the pattern // that most closely matches the zone name. ServeMux is DNSSEC aware, meaning // that queries for the DS record are redirected to the parent zone (if that // is also registered), otherwise the child gets the query. // ServeMux is also safe for concurrent access from multiple goroutines. type ServeMux struct { z map[string]Handler m *sync.RWMutex } // NewServeMux allocates and returns a new ServeMux. func NewServeMux() *ServeMux { return &ServeMux{z: make(map[string]Handler), m: new(sync.RWMutex)} } // DefaultServeMux is the default ServeMux used by Serve. var DefaultServeMux = NewServeMux() // The HandlerFunc type is an adapter to allow the use of // ordinary functions as DNS handlers. If f is a function // with the appropriate signature, HandlerFunc(f) is a // Handler object that calls f. type HandlerFunc func(ResponseWriter, *Msg) // ServerDNS calls f(w, r) func (f HandlerFunc) ServeDNS(w ResponseWriter, r *Msg) { f(w, r) } // FailedHandler returns a HandlerFunc // returns SERVFAIL for every request it gets. func HandleFailed(w ResponseWriter, r *Msg) { m := new(Msg) m.SetRcode(r, RcodeServerFailure) // does not matter if this write fails w.WriteMsg(m) } func failedHandler() Handler { return HandlerFunc(HandleFailed) } // ListenAndServe Starts a server on addresss and network speficied. Invoke handler // for incoming queries. func ListenAndServe(addr string, network string, handler Handler) error { server := &Server{Addr: addr, Net: network, Handler: handler} return server.ListenAndServe() } // ActivateAndServe activates a server with a listener from systemd, // l and p should not both be non-nil. // If both l and p are not nil only p will be used. // Invoke handler for incoming queries. func ActivateAndServe(l net.Listener, p net.PacketConn, handler Handler) error { server := &Server{Listener: l, PacketConn: p, Handler: handler} return server.ActivateAndServe() } func (mux *ServeMux) match(q string, t uint16) Handler { mux.m.RLock() defer mux.m.RUnlock() var handler Handler b := make([]byte, len(q)) // worst case, one label of length q off := 0 end := false for { l := len(q[off:]) for i := 0; i < l; i++ { b[i] = q[off+i] if b[i] >= 'A' && b[i] <= 'Z' { b[i] |= ('a' - 'A') } } if h, ok := mux.z[string(b[:l])]; ok { // 'causes garbage, might want to change the map key if t != TypeDS { return h } else { // Continue for DS to see if we have a parent too, if so delegeate to the parent handler = h } } off, end = NextLabel(q, off) if end { break } } // Wildcard match, if we have found nothing try the root zone as a last resort. if h, ok := mux.z["."]; ok { return h } return handler } // Handle adds a handler to the ServeMux for pattern. func (mux *ServeMux) Handle(pattern string, handler Handler) { if pattern == "" { panic("dns: invalid pattern " + pattern) } mux.m.Lock() mux.z[Fqdn(pattern)] = handler mux.m.Unlock() } // Handle adds a handler to the ServeMux for pattern. func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Msg)) { mux.Handle(pattern, HandlerFunc(handler)) } // HandleRemove deregistrars the handler specific for pattern from the ServeMux. func (mux *ServeMux) HandleRemove(pattern string) { if pattern == "" { panic("dns: invalid pattern " + pattern) } // don't need a mutex here, because deleting is OK, even if the // entry is note there. delete(mux.z, Fqdn(pattern)) } // ServeDNS dispatches the request to the handler whose // pattern most closely matches the request message. If DefaultServeMux // is used the correct thing for DS queries is done: a possible parent // is sought. // If no handler is found a standard SERVFAIL message is returned // If the request message does not have exactly one question in the // question section a SERVFAIL is returned. func (mux *ServeMux) ServeDNS(w ResponseWriter, request *Msg) { var h Handler if len(request.Question) != 1 { h = failedHandler() } else { if h = mux.match(request.Question[0].Name, request.Question[0].Qtype); h == nil { h = failedHandler() } } h.ServeDNS(w, request) } // Handle registers the handler with the given pattern // in the DefaultServeMux. The documentation for // ServeMux explains how patterns are matched. func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) } // HandleRemove deregisters the handle with the given pattern // in the DefaultServeMux. func HandleRemove(pattern string) { DefaultServeMux.HandleRemove(pattern) } // HandleFunc registers the handler function with the given pattern // in the DefaultServeMux. func HandleFunc(pattern string, handler func(ResponseWriter, *Msg)) { DefaultServeMux.HandleFunc(pattern, handler) } // A Server defines parameters for running an DNS server. type Server struct { // Address to listen on, ":dns" if empty. Addr string // if "tcp" it will invoke a TCP listener, otherwise an UDP one. Net string // TCP Listener to use, this is to aid in systemd's socket activation. Listener net.Listener // UDP "Listener" to use, this is to aid in systemd's socket activation. PacketConn net.PacketConn // Handler to invoke, dns.DefaultServeMux if nil. Handler Handler // Default buffer size to use to read incoming UDP messages. If not set // it defaults to MinMsgSize (512 B). UDPSize int // The net.Conn.SetReadTimeout value for new connections, defaults to 2 * time.Second. ReadTimeout time.Duration // The net.Conn.SetWriteTimeout value for new connections, defaults to 2 * time.Second. WriteTimeout time.Duration // TCP idle timeout for multiple queries, if nil, defaults to 8 * time.Second (RFC 5966). IdleTimeout func() time.Duration // Secret(s) for Tsig map[]. TsigSecret map[string]string // For graceful shutdown. stopUDP chan bool stopTCP chan bool wgUDP sync.WaitGroup wgTCP sync.WaitGroup // make start/shutdown not racy lock sync.Mutex started bool } // ListenAndServe starts a nameserver on the configured address in *Server. func (srv *Server) ListenAndServe() error { srv.lock.Lock() if srv.started { return &Error{err: "server already started"} } srv.stopUDP, srv.stopTCP = make(chan bool), make(chan bool) srv.started = true srv.lock.Unlock() addr := srv.Addr if addr == "" { addr = ":domain" } if srv.UDPSize == 0 { srv.UDPSize = MinMsgSize } switch srv.Net { case "tcp", "tcp4", "tcp6": a, e := net.ResolveTCPAddr(srv.Net, addr) if e != nil { return e } l, e := net.ListenTCP(srv.Net, a) if e != nil { return e } return srv.serveTCP(l) case "udp", "udp4", "udp6": a, e := net.ResolveUDPAddr(srv.Net, addr) if e != nil { return e } l, e := net.ListenUDP(srv.Net, a) if e != nil { return e } if e := setUDPSocketOptions(l); e != nil { return e } return srv.serveUDP(l) } return &Error{err: "bad network"} } // ActivateAndServe starts a nameserver with the PacketConn or Listener // configured in *Server. Its main use is to start a server from systemd. func (srv *Server) ActivateAndServe() error { srv.lock.Lock() if srv.started { return &Error{err: "server already started"} } srv.stopUDP, srv.stopTCP = make(chan bool), make(chan bool) srv.started = true srv.lock.Unlock() if srv.UDPSize == 0 { srv.UDPSize = MinMsgSize } if srv.PacketConn != nil { if srv.UDPSize == 0 { srv.UDPSize = MinMsgSize } if t, ok := srv.PacketConn.(*net.UDPConn); ok { if e := setUDPSocketOptions(t); e != nil { return e } return srv.serveUDP(t) } } if srv.Listener != nil { if t, ok := srv.Listener.(*net.TCPListener); ok { return srv.serveTCP(t) } } return &Error{err: "bad listeners"} } // Shutdown gracefully shuts down a server. After a call to Shutdown, ListenAndServe and // ActivateAndServe will return. All in progress queries are completed before the server // is taken down. If the Shutdown is taking longer than the reading timeout and error // is returned. func (srv *Server) Shutdown() error { srv.lock.Lock() if !srv.started { return &Error{err: "server not started"} } srv.started = false srv.lock.Unlock() net, addr := srv.Net, srv.Addr switch { case srv.Listener != nil: a := srv.Listener.Addr() net, addr = a.Network(), a.String() case srv.PacketConn != nil: a := srv.PacketConn.LocalAddr() net, addr = a.Network(), a.String() } fin := make(chan bool) switch net { case "tcp", "tcp4", "tcp6": go func() { srv.stopTCP <- true srv.wgTCP.Wait() fin <- true }() case "udp", "udp4", "udp6": go func() { srv.stopUDP <- true srv.wgUDP.Wait() fin <- true }() } c := &Client{Net: net} go c.Exchange(new(Msg), addr) // extra query to help ReadXXX loop to pass select { case <-time.After(srv.getReadTimeout()): return &Error{err: "server shutdown is pending"} case <-fin: return nil } } // getReadTimeout is a helper func to use system timeout if server did not intend to change it. func (srv *Server) getReadTimeout() time.Duration { rtimeout := dnsTimeout if srv.ReadTimeout != 0 { rtimeout = srv.ReadTimeout } return rtimeout } // serveTCP starts a TCP listener for the server. // Each request is handled in a seperate goroutine. func (srv *Server) serveTCP(l *net.TCPListener) error { defer l.Close() handler := srv.Handler if handler == nil { handler = DefaultServeMux } rtimeout := srv.getReadTimeout() // deadline is not used here for { rw, e := l.AcceptTCP() if e != nil { continue } m, e := srv.readTCP(rw, rtimeout) select { case <-srv.stopTCP: return nil default: } if e != nil { continue } srv.wgTCP.Add(1) go srv.serve(rw.RemoteAddr(), handler, m, nil, nil, rw) } panic("dns: not reached") } // serveUDP starts a UDP listener for the server. // Each request is handled in a seperate goroutine. func (srv *Server) serveUDP(l *net.UDPConn) error { defer l.Close() handler := srv.Handler if handler == nil { handler = DefaultServeMux } rtimeout := srv.getReadTimeout() // deadline is not used here for { m, s, e := srv.readUDP(l, rtimeout) select { case <-srv.stopUDP: return nil default: } if e != nil { continue } srv.wgUDP.Add(1) go srv.serve(s.RemoteAddr(), handler, m, l, s, nil) } panic("dns: not reached") } // Serve a new connection. func (srv *Server) serve(a net.Addr, h Handler, m []byte, u *net.UDPConn, s *sessionUDP, t *net.TCPConn) { w := &response{tsigSecret: srv.TsigSecret, udp: u, tcp: t, remoteAddr: a, udpSession: s} q := 0 defer func() { if u != nil { srv.wgUDP.Done() } if t != nil { srv.wgTCP.Done() } }() Redo: req := new(Msg) err := req.Unpack(m) if err != nil { // Send a FormatError back x := new(Msg) x.SetRcodeFormatError(req) w.WriteMsg(x) goto Exit } w.tsigStatus = nil if w.tsigSecret != nil { if t := req.IsTsig(); t != nil { secret := t.Hdr.Name if _, ok := w.tsigSecret[secret]; !ok { w.tsigStatus = ErrKeyAlg } w.tsigStatus = TsigVerify(m, w.tsigSecret[secret], "", false) w.tsigTimersOnly = false w.tsigRequestMAC = req.Extra[len(req.Extra)-1].(*TSIG).MAC } } h.ServeDNS(w, req) // Writes back to the client Exit: if w.hijacked { return // client calls Close() } if u != nil { // UDP, "close" and return w.Close() return } idleTimeout := tcpIdleTimeout if srv.IdleTimeout != nil { idleTimeout = srv.IdleTimeout() } m, e := srv.readTCP(w.tcp, idleTimeout) if e == nil { q++ // TODO(miek): make this number configurable? if q > 128 { // close socket after this many queries w.Close() return } goto Redo } w.Close() return } func (srv *Server) readTCP(conn *net.TCPConn, timeout time.Duration) ([]byte, error) { conn.SetReadDeadline(time.Now().Add(timeout)) l := make([]byte, 2) n, err := conn.Read(l) if err != nil || n != 2 { if err != nil { return nil, err } return nil, ErrShortRead } length, _ := unpackUint16(l, 0) if length == 0 { return nil, ErrShortRead } m := make([]byte, int(length)) n, err = conn.Read(m[:int(length)]) if err != nil || n == 0 { if err != nil { return nil, err } return nil, ErrShortRead } i := n for i < int(length) { j, err := conn.Read(m[i:int(length)]) if err != nil { return nil, err } i += j } n = i m = m[:n] return m, nil } func (srv *Server) readUDP(conn *net.UDPConn, timeout time.Duration) ([]byte, *sessionUDP, error) { conn.SetReadDeadline(time.Now().Add(timeout)) m := make([]byte, srv.UDPSize) n, s, e := readFromSessionUDP(conn, m) if e != nil || n == 0 { if e != nil { return nil, nil, e } return nil, nil, ErrShortRead } m = m[:n] return m, s, nil } // WriteMsg implements the ResponseWriter.WriteMsg method. func (w *response) WriteMsg(m *Msg) (err error) { var data []byte if w.tsigSecret != nil { // if no secrets, dont check for the tsig (which is a longer check) if t := m.IsTsig(); t != nil { data, w.tsigRequestMAC, err = TsigGenerate(m, w.tsigSecret[t.Hdr.Name], w.tsigRequestMAC, w.tsigTimersOnly) if err != nil { return err } _, err = w.Write(data) return err } } data, err = m.Pack() if err != nil { return err } _, err = w.Write(data) return err } // Write implements the ResponseWriter.Write method. func (w *response) Write(m []byte) (int, error) { switch { case w.udp != nil: n, err := writeToSessionUDP(w.udp, m, w.udpSession) return n, err case w.tcp != nil: lm := len(m) if lm < 2 { return 0, io.ErrShortBuffer } if lm > MaxMsgSize { return 0, &Error{err: "message too large"} } l := make([]byte, 2, 2+lm) l[0], l[1] = packUint16(uint16(lm)) m = append(l, m...) n, err := io.Copy(w.tcp, bytes.NewReader(m)) return int(n), err } panic("not reached") } // LocalAddr implements the ResponseWriter.LocalAddr method. func (w *response) LocalAddr() net.Addr { if w.tcp != nil { return w.tcp.LocalAddr() } return w.udp.LocalAddr() } // RemoteAddr implements the ResponseWriter.RemoteAddr method. func (w *response) RemoteAddr() net.Addr { return w.remoteAddr } // TsigStatus implements the ResponseWriter.TsigStatus method. func (w *response) TsigStatus() error { return w.tsigStatus } // TsigTimersOnly implements the ResponseWriter.TsigTimersOnly method. func (w *response) TsigTimersOnly(b bool) { w.tsigTimersOnly = b } // Hijack implements the ResponseWriter.Hijack method. func (w *response) Hijack() { w.hijacked = true } // Close implements the ResponseWriter.Close method func (w *response) Close() error { // Can't close the udp conn, as that is actually the listener. if w.tcp != nil { e := w.tcp.Close() w.tcp = nil return e } return nil }