Merge branch 'master' of github.com:miekg/dns

This commit is contained in:
Miek Gieben 2012-12-02 09:06:59 +01:00
commit 6507aee74e
4 changed files with 49 additions and 52 deletions

View File

@ -41,7 +41,7 @@ Miek Gieben - 2010-2012 - miek@miek.nl
# Building
Building is done with the `go` tool. If you have setup your GOPATH
correctly the following should work:
correctly, the following should work:
go get github.com/miekg/dns
go build dns

View File

@ -7,7 +7,7 @@
* sign
* verify
* Use BIND10 memory efficient zone structure?
* make more use of io.Reader/io.Writer
* copy srv/mx sorting from base library
## Nice to have

72
xfr.go
View File

@ -1,26 +1,26 @@
package dns
// XfrToken is used when doing [IA]xfr with a remote server.
type XfrToken struct {
RR []RR // the set of RRs in the answer section of the AXFR reply message
Error error // if something went wrong, this contains the error
// Envelope is used when doing [IA]xfr with a remote server.
type Envelope struct {
RR []RR // The set of RRs in the answer section of the AXFR reply message.
Error error // If something went wrong, this contains the error.
}
// XfrReceive performs a [AI]xfr request (depends on the message's Qtype). It returns
// a channel of XfrToken on which the replies from the server are sent. At the end of
// TransferIn performs a [AI]xfr request (depends on the message's Qtype). It returns
// a channel of *Envelope on which the replies from the server are sent. At the end of
// the transfer the channel is closed.
// It panics if the Qtype does not equal TypeAXFR or TypeIXFR. The messages are TSIG checked if
// The messages are TSIG checked if
// needed, no other post-processing is performed. The caller must dissect the returned
// messages.
//
// Basic use pattern for receiving an AXFR:
//
// // m contains the AXFR request
// t, e := client.XfrReceive(m, "127.0.0.1:53")
// t, e := c.TransferIn(m, "127.0.0.1:53")
// for r := range t {
// // ... deal with r.RR or r.Error
// }
func (c *Client) XfrReceive(q *Msg, a string) (chan *XfrToken, error) {
func (c *Client) TransferIn(q *Msg, a string) (chan *Envelope, error) {
w := new(reply)
w.client = c
w.addr = a
@ -31,13 +31,13 @@ func (c *Client) XfrReceive(q *Msg, a string) (chan *XfrToken, error) {
if err := w.send(q); err != nil {
return nil, err
}
e := make(chan *XfrToken)
e := make(chan *Envelope)
switch q.Question[0].Qtype {
case TypeAXFR:
go w.axfrReceive(q, e)
go w.axfrIn(q, e)
return e, nil
case TypeIXFR:
go w.ixfrReceive(q, e)
go w.ixfrIn(q, e)
return e, nil
default:
return nil, nil
@ -45,23 +45,23 @@ func (c *Client) XfrReceive(q *Msg, a string) (chan *XfrToken, error) {
panic("dns: not reached")
}
func (w *reply) axfrReceive(q *Msg, c chan *XfrToken) {
func (w *reply) axfrIn(q *Msg, c chan *Envelope) {
first := true
defer w.conn.Close()
defer close(c)
for {
in, err := w.receive()
if err != nil {
c <- &XfrToken{nil, err}
c <- &Envelope{nil, err}
return
}
if in.Id != q.Id {
c <- &XfrToken{in.Answer, ErrId}
c <- &Envelope{in.Answer, ErrId}
return
}
if first {
if !checkXfrSOA(in, true) {
c <- &XfrToken{in.Answer, ErrSoa}
c <- &Envelope{in.Answer, ErrSoa}
return
}
first = !first
@ -70,16 +70,16 @@ func (w *reply) axfrReceive(q *Msg, c chan *XfrToken) {
if !first {
w.tsigTimersOnly = true // Subsequent envelopes use this.
if checkXfrSOA(in, false) {
c <- &XfrToken{in.Answer, nil}
c <- &Envelope{in.Answer, nil}
return
}
c <- &XfrToken{in.Answer, nil}
c <- &Envelope{in.Answer, nil}
}
}
panic("dns: not reached")
}
func (w *reply) ixfrReceive(q *Msg, c chan *XfrToken) {
func (w *reply) ixfrIn(q *Msg, c chan *Envelope) {
var serial uint32 // The first serial seen is the current server serial
first := true
defer w.conn.Close()
@ -87,23 +87,23 @@ func (w *reply) ixfrReceive(q *Msg, c chan *XfrToken) {
for {
in, err := w.receive()
if err != nil {
c <- &XfrToken{in.Answer, err}
c <- &Envelope{in.Answer, err}
return
}
if q.Id != in.Id {
c <- &XfrToken{in.Answer, ErrId}
c <- &Envelope{in.Answer, ErrId}
return
}
if first {
// A single SOA RR signals "no changes"
if len(in.Answer) == 1 && checkXfrSOA(in, true) {
c <- &XfrToken{in.Answer, nil}
c <- &Envelope{in.Answer, nil}
return
}
// Check if the returned answer is ok
if !checkXfrSOA(in, true) {
c <- &XfrToken{in.Answer, ErrSoa}
c <- &Envelope{in.Answer, ErrSoa}
return
}
// This serial is important
@ -117,11 +117,11 @@ func (w *reply) ixfrReceive(q *Msg, c chan *XfrToken) {
// If the last record in the IXFR contains the servers' SOA, we should quit
if v, ok := in.Answer[len(in.Answer)-1].(*RR_SOA); ok {
if v.Serial == serial {
c <- &XfrToken{in.Answer, nil}
c <- &Envelope{in.Answer, nil}
return
}
}
c <- &XfrToken{in.Answer, nil}
c <- &Envelope{in.Answer, nil}
}
}
panic("dns: not reached")
@ -141,32 +141,32 @@ func checkXfrSOA(in *Msg, first bool) bool {
return false
}
// XfrSend performs an outgoing [AI]xfr depending on the request message. The
// TransferOut performs an outgoing [AI]xfr depending on the request message. The
// caller is responsible for sending the correct sequence of RR sets through
// the channel c. For reasons of symmetry XfrToken is re-used.
// the channel c. For reasons of symmetry Envelope is re-used.
// Errors are signaled via the error pointer, when an error occurs the function
// sets the error and returns (it does not close the channel).
// TSIG and enveloping is handled by XfrSend.
// TSIG and enveloping is handled by TransferOut.
//
// Basic use pattern for sending an AXFR:
//
// // q contains the AXFR request
// c := make(chan *XfrToken)
// c := make(chan *Envelope)
// var e *error
// err := XfrSend(w, q, c, e)
// w.Hijack() // hijack the connection so that the library doesn't close it
// for _, rrset := range rrsets { // rrset is a []RR
// c <- &{XfrToken{RR: rrset}
// err := TransferOut(w, q, c, e)
// w.Hijack() // hijack the connection so that the package doesn't close it
// for _, rrset := range rrsets { // rrsets is a []RR
// c <- &{Envelope{RR: rrset}
// if e != nil {
// close(c)
// break
// }
// }
// // w.Close() // Don't! Let the client close the connection
func XfrSend(w ResponseWriter, q *Msg, c chan *XfrToken, e *error) error {
func TransferOut(w ResponseWriter, q *Msg, c chan *Envelope, e *error) error {
switch q.Question[0].Qtype {
case TypeAXFR, TypeIXFR:
go axfrSend(w, q, c, e)
go xfrOut(w, q, c, e)
return nil
default:
return nil
@ -175,7 +175,7 @@ func XfrSend(w ResponseWriter, q *Msg, c chan *XfrToken, e *error) error {
}
// TODO(mg): count the RRs and the resulting size.
func axfrSend(w ResponseWriter, req *Msg, c chan *XfrToken, e *error) {
func xfrOut(w ResponseWriter, req *Msg, c chan *Envelope, e *error) {
rep := new(Msg)
rep.SetReply(req)
rep.Authoritative = true

View File

@ -8,19 +8,16 @@ import (
"strings"
)
// Only used when debugging the parser itself.
var _DEBUG = false
var _DEBUG = false // Only used when debugging the parser itself.
// Complete unsure about the correctness of this value?
// Large blobs of base64 code might get longer than this....
const maxTok = 2048
const maxTok = 2048 // Largest token we can return.
// Tokinize a RFC 1035 zone file. The tokenizer will normalize it:
// * Add ownernames if they are left blank;
// * Suppress sequences of spaces;
// * Make each RR fit on one line (NEWLINE is send as last)
// * Make each RR fit on one line (_NEWLINE is send as last)
// * Handle comments: ;
// * Handle braces.
// * Handle braces - anywhere.
const (
// Zonefile
_EOF = iota
@ -44,7 +41,7 @@ const (
_EXPECT_OWNER_BL // Whitespace after the ownername
_EXPECT_ANY // Expect rrtype, ttl or class
_EXPECT_ANY_NOCLASS // Expect rrtype or ttl
_EXPECT_ANY_NOCLASS_BL // The Whitespace after _EXPECT_ANY_NOCLASS
_EXPECT_ANY_NOCLASS_BL // The whitespace after _EXPECT_ANY_NOCLASS
_EXPECT_ANY_NOTTL // Expect rrtype or class
_EXPECT_ANY_NOTTL_BL // Whitespace after _EXPECT_ANY_NOTTL
_EXPECT_RRTYPE // Expect rrtype
@ -78,12 +75,12 @@ func (e *ParseError) Error() (s string) {
}
type lex struct {
token string // Text of the token
err bool // When true, token text has lexer error
value uint8 // Value: _STRING, _BLANK, etc.
line int // Line in the file
column int // Column in the file
torc uint16 // Type or class as parsed in the lexer, we only need to look this up in the grammar
token string // text of the token
err bool // when true, token text has lexer error
value uint8 // value: _STRING, _BLANK, etc.
line int // line in the file
column int // column in the file
torc uint16 // type or class as parsed in the lexer, we only need to look this up in the grammar
}
// Tokens are returned when a zone file is parsed.